Determination of the radiative decay width of the η_{c} meson

ARGUS Collaboration

H. Albrecht ${ }^{\text {a }}$, T. Hamacher ${ }^{\text {a }}$, R.P. Hofmann ${ }^{\text {a }}$, T. Kirchhoff ${ }^{\text {a }}$, R. Mankel ${ }^{\text {a, }}$, A. Nau ${ }^{\text {a }}$, S. Nowak ${ }^{\text {a, }}$, D. Reßing ${ }^{\text {a }}$, H. Schröder ${ }^{\text {a }}$, H.D. Schulz ${ }^{\text {a }}$, M. Walter ${ }^{\text {a, }}$, R. Wurth ${ }^{\text {b }}$, C. Hast ${ }^{\text {b }}$, H. Kapitza ${ }^{\text {b }}$, H. Kolanoski ${ }^{\text {b }}$, A. Kosche ${ }^{\text {b }}$, A. Lange ${ }^{\text {b }}$, A. Lindner ${ }^{\text {b }}$, M. Schieber ${ }^{\text {b }}$, T. Siegmund ${ }^{\text {b }}$, B. Spaan ${ }^{\text {b }}$, H. Thurn ${ }^{\text {b }}$, D. Töpfer ${ }^{\text {b }}$, D. Wegener ${ }^{\text {b }}$, P. Eckstein ${ }^{\text {c }}$, M. Schmidtler ${ }^{\text {c }}$, M. Schramm ${ }^{\text {c }}$, K.R. Schubert ${ }^{\text {c }}$, R. Schwierz ${ }^{\text {c }}$, R. Waldi ${ }^{\text {c }}$, K. Reim ${ }^{\text {d }}$, H. Wegener ${ }^{\text {d }}$, R. Eckmann ${ }^{\text {e }}$, H. Kuipers ${ }^{\text {e }}$, O. Mai ${ }^{\text {e }}$, R. Mundt ${ }^{\text {e }}$, T. Oest ${ }^{e}$, R. Reiner ${ }^{e}$, W. Schmidt-Parzefall ${ }^{e}$, J. Stiewe ${ }^{\text {f }}$, S. Werner ${ }^{\text {f }}$, K. Ehret ${ }^{\text {g }}$, W. Hofmann ${ }^{g}$, A. Hüpper ${ }^{g}$, K.T. Knöpfle ${ }^{\text {g }}$, J. Spengler ${ }^{\text {g }}$, P. Krieger ${ }^{\text {h,6 }}$, D.B. MacFarlane ${ }^{\text {h,7 }}$, J.D. Prentice ${ }^{\text {h,6 }}$, P.R.B. Saull ${ }^{\text {h. }}$, K. Tzamariudaki ${ }^{\text {h.7 }}$, R.G. Van de Water ${ }^{\text {h,6 }}$, T.-S. Yoon ${ }^{\text {h, }, ~}$, C. Frankl ${ }^{\text {i }}$, M. Schneider ${ }^{\text {i }}$, S. Weseler ${ }^{\text {i }}$, G. Kernel ${ }^{\text {j }}$, P. Križan ${ }^{\text {j }}$, E. Križnic ${ }^{\text {j }}$, T. Podobnik ${ }^{j}$, T. Živko ${ }^{\text {j }}$, V. Balagura ${ }^{\text {k }}$, I. Belyaev ${ }^{\text {k }}$, S. Chechelnitsky ${ }^{\text {k }}$, M. Danilov ${ }^{\text {k }}$, A. Droutskoy ${ }^{\text {k }}$, Yu. Gershtein ${ }^{\text {k }}$, A. Golutvin ${ }^{\text {k }}$, I. Korolko ${ }^{\text {k }}$, G. Kostina ${ }^{\text {k }}$, D. Litvintsev ${ }^{\text {k }}$, V. Lubimov ${ }^{\text {k }}$, P. Pakhlov ${ }^{\text {k }}$, S. Semenov ${ }^{\text {k }}$, A. Snizhko ${ }^{\text {k }}$, I.Tichomirov ${ }^{\text {k }}$, Yu. Zaitsev ${ }^{\text {k }}$
${ }^{\text {a }}$ DESY, Hamburg, Germany
${ }^{6}$ Institut fuir Physik, Universitat Dortmund, Germany ${ }^{2}$
${ }^{\text {c }}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Germany ${ }^{3}$
${ }^{d}$ Physikalisches Institut, Universität Erlangen-Nürnberg, Germany ${ }^{4}$
${ }^{\text {c }}$ II. Institut für Experimentalphysik, Universitàt Hamburg, Germany
${ }^{f}$ Institut für Hochenergiephysik, Universitdat Heidelberg, Germany ${ }^{5}$
${ }^{8}$ Max-Planck-Institut fuir Kernphysik, Heidelberg, Germany
${ }^{\text {h }}$ Institute of Particle Physics, Canada ${ }^{8}$
${ }^{i}$ Institut für Experimentelle Kernphysik, Universitatt Karlsruhe, Germany ${ }^{9}$
${ }^{j}$ Institut J. Stefan and Oddelek za fiziko, Univerza v Ljubljani, Ljubljana, Slovenia ${ }^{10}$
${ }^{k}$ Institute of Theoretical and Experimental Physics, Moscow, Russia

Received 26 July 1994
Editor: K. Winter

Abstract

An analysis of the reaction $\gamma \gamma \rightarrow \eta_{c}$ was performed in five different decay channels of the $\eta_{c}: K_{S}^{0} K^{ \pm} \pi^{\mp}, K^{+} K^{-} \pi^{+} \pi^{-}$, $2 \pi^{+} 2 \pi^{-}, \phi \phi$ and $2 K^{+} 2 K^{-}$. A value $\Gamma_{\gamma}\left(\eta_{c}\right)=(11.3 \pm 4.2) \mathrm{keV}$ was obtained for the radiative decay width by combining the results from the first four channels. Using our result on the two-photon width we also determined the branching ratio for the decay $\eta_{c} \rightarrow 2 K^{+} 2 K^{-}$.

The measurements of the radiative decay widths of hadrons have proved to be one of the most important tools to study the composition and the properties of the bound states of strong interactions. While for light quarks the understanding of the binding forces is still on a more phenomenological level, in heavy quark systems, such as charmonium, fundamental tests of QCD dynamics can be made. One of the important quantities in the charmonium system is the relation between the leptonic decay width of the J / ψ and the two-photon width of the $\boldsymbol{\eta}_{c}$ which is to the lowest order given by (see for example [1])

$$
\frac{\Gamma_{\gamma^{\prime}}\left(\eta_{c}\right)}{\Gamma_{e^{+} e^{-}}(J / \psi)}=3 e_{Q}^{2}\left(\frac{M_{J / \psi}}{M_{\eta_{c}}}\right)^{2} .
$$

QCD corrections have been calculated to order α_{s} by Barbieri et al. [2] resulting in the relation $\Gamma_{y \gamma}\left(\eta_{c}\right)=\Gamma_{e^{+}-}(J / \psi) \cdot\left(1.60_{-0.05}^{+0.07}\right)$, which, together with $\Gamma_{e^{+} e^{-}}(J / \psi)=(5.36 \pm 0.29) \mathrm{keV}$ [3], yields the prediction $\Gamma_{\gamma r}\left(\eta_{c}\right)=(8.6 \pm 0.6) \mathrm{keV}$. Furthermore, with the assumption that the hadronic η_{c} decays can be described by the lowest order two-gluon diagram one obtains the ratio of the hadronic to two-photon partial width $\Gamma_{\text {hadrons }}\left(\eta_{c}\right) / \Gamma_{\gamma \gamma}\left(\eta_{c}\right)$ proportional to $\left(\alpha_{s} / \alpha\right)^{2}$. This relation could in principle be used to determine α_{s}. However, in this case the QCD radiative corrections seem to be too large to provide a reliable prediction.

The radiative decay width $\Gamma_{\gamma \gamma}\left(\eta_{c}\right)$ has been measured by two different methods: in photon-photon collision experiments [4-7] and by the measurement of the process $p \bar{p} \rightarrow \gamma \gamma[8]$. The most significant results

[^0]were obtained from the analysis of the decay channel $\eta_{c} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$, where a good identification of the K_{S}^{0} was achieved by determining its decay vertex. The results range from 4 to 27 keV and have large errors because of the small number of collected η_{c} events and uncertainties in the knowledge of $\boldsymbol{\eta}_{c}$ branching ratios. The present analysis aims at improving the precision of the $\Gamma_{\gamma \gamma}\left(\boldsymbol{\eta}_{c}\right)$ measurement by using several decay channels of the η_{c} meson.

The data used in this analysis were collected using the ARGUS detector at the $e^{+} e^{-}$storage ring DORIS II at DESY, and correspond to an integrated luminosity of $473 \mathrm{pb}^{-1}$. The beam energies varied between 4.7 and 5.3 GeV . The ARGUS detector and details about its trigger and its particle identification capabilities were described elsewhere [9]. In what follows, we describe the main features of the analysis, while details can be found in Refs. [10,11].

The two-photon production of the η_{c} was studied in $e^{+} e^{-}$interactions via the reaction
$e^{+} e^{-} \rightarrow e^{+} e^{-} \eta_{c}$
with the η_{c} decaying as follows:
$\eta_{c} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \rightarrow \pi^{+} \pi^{-} K^{ \pm} \pi^{\mp}$
$\eta_{c} \rightarrow \phi \phi \rightarrow 2 K^{+} 2 K^{-}$

We required for the final-state particles to have the vector sum of transverse momenta, $\sum p_{i}$, close to zero and that no other particles were detected, since the final-state electrons scatter predominantly close to the beam direction and escape detection. In this way twophoton processes with almost real photons were selected (no-tag condition).

Candidates for η_{c} decays (2a) to (2e) were selected from events with four charged particles and zero net charge in the final state. In the case of decays (2b) to (2c) all four particles had to originate from a main vertex close to the nominal interaction point. In the case of decay channel (2a) we have accepted two classes of events. Either two particles with opposite charge had to originate from a common vertex close to the nominal interaction point, while the other two had

Fig. 1. Invariant mass of $\pi^{+} \pi^{-}$for events in the η_{c} region ($2.90 \mathrm{GeV}<\mathrm{W}_{\gamma \gamma}<3.06 \mathrm{GeV}$): (a) for events with a secondary vertex, (b) for events without a reconstructed secondary vertex.
to form a secondary decay vertex, or all four particles had to fulfil the same conditions for the vertex as in the case of decays (2b) to (2e). In order to use only well measured tracks, we required for each charged particle that the angle θ between the momentum direction and the beam axis fulfilled $|\cos (\theta)| \leq 0.92$, and for the transverse momentum $p_{t} \geq 0.06 \mathrm{GeV} / \mathrm{c}$ ($p_{t} \geq 0.13 \mathrm{GeV} / \mathrm{c}$ for the decay channel (2e)).
Particle identification is performed by using data from measurements of specific ionisation and time-offlight. A normalized likelihood is calculated for each of the mass hypotheses, e, μ, π, K and p [9]. A hypothesis was accepted if the normalized likelihood exceeded a channel specific value from 1% to 25% [10,11$]$.
Particles associated with the K_{S}^{0} had to be identified as pions, and their invariant mass was required to lie within 20 MeV around the nominal K_{S}^{0} mass (Fig. 1), corresponding to about three standard deviations of the Monte Carlo simulated distribution of K_{S}^{0} masses.
The main background reduction came from the condition on the vector sum of the transverse momenta of the detected charged particles, which is for the decays (2a) and (2d) $\left(\sum p_{t}\right)^{2} \leq 0.03(\mathrm{GeV} / \mathrm{c})^{2}$ and for the other decay channels $\left(\sum p_{t}\right)^{2} \leq 0.007(\mathrm{GeV} / \mathrm{c})^{2}$.
A further background reduction was achieved by restricting the number of photons in the event. In the case of the η_{c} decays (2b) and (2c) no photons were allowed in the final state. Photons were defined as calorimeter hits corresponding to energy deposits of more than 80 MeV , which were not associated with charged tracks. Shower counters with high noise rates were excluded from the analysis. Due to the split-
ting of showers initiated by charged particles in the calorimeter, parts of the showers can be misinterpreted as photons. Only clusters clearly separated from clusters caused by charged particles were considered as photons. This separation was performed by requiring $\left|\cos \left(\vartheta_{c y}\right)\right|<0.9$, where $\vartheta_{c y}$ is the angle between the line from the interaction point to the hit in the calorimeter and the line from the interaction point to the point, where the charged track hits the calorimeter. In this way the requirement, that no photons are present in the event, rejected 21% of events corresponding to channel (2 b), and 16% of events corresponding to (2c). In the case of channels (2a) and (2e) up to three photons were allowed in the event, so that the analysis could be done without accounting for noisy shower counters and splitting of showers. The efficiency reduction by this constraint is 1.2%. For the decay channel (2d) no constraint on the number of photons was imposed. These criteria were taken into account when determining the overall acceptance.
In the case of decay (2a) and (2b) several combinations could fulfil the particle hypotheses. If the particle identification was not unique the combination with the highest probability was chosen. From Monte Carlo simulation studies we conclude that with this procedure more than 95% of events were properly identified. The remaining wrong combinations have usually invariant masses close to the η_{c} mass, leading to small tails in the distribution. The effect was taken into account in the efficiency determination as described below.

With this selection the invariant mass spectra for the channels (2a) to (2c) in Fig. 2 were obtained. Fig. 3 shows the invariant mass spectra for the four-kaon channels (2d) and (2e). In an attempt to increase the efficiency for these channels the particle identification requirements could be relaxed by exploiting in addition the mass constraint in channel (2d) and the balance of strangeness in (2e). In particular, no particle identification was required for the $\phi \phi$ channel (2d). Candidates for this channel were selected by forming the invariant masses of each pair of oppositely charged particles assuming kaon masses. An event was selected, if it had a combination with both $K^{+} K^{-}$masses within $15 \mathrm{MeV} / \mathrm{c}^{2}$ of the ϕ mass. No such event with a $\phi \phi$ invariant mass in the η_{c} region was found (Fig. 3).
To select the decay channel (2e) three of the four

Fig. 2. Invariant mass distributions of $K_{S}^{0} K^{ \pm} \pi^{\mp}, 2 \pi^{+} 2 \pi^{-}$and $K^{+} K^{-} \pi^{+} \pi^{-}$final states.
particles were required to be consistent with the kaon hypothesis and to have a momentum below $1 \mathrm{GeV} / \mathrm{c}^{2}$. The four kaon mass spectrum in Fig. 3b shows a clean η_{c} peak together with a reflection from channel (2b) around $3.3 \mathrm{GeV} / \mathrm{c}^{2}$. In the four-kaon channel we also searched for the decay $\eta_{c} \rightarrow \phi K^{+} K^{-}$. Candidate events had to have a $K^{+} K^{-}$combination with an invariant mass within $6 \mathrm{MeV} / \mathrm{c}^{2}$ of the ϕ mass. Two events were found in the η_{c} region above no background (Fig. 3).

Several possible background contributions in the signal region were considered. The dominant background under the η_{c} signals is due to the non-resonant two-photon production of the considered final states. Other possible sources of background are the reactions $\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$ and $\gamma \gamma \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$, where the π^{0} is not observed. This would mainly af-

Fig. 3. Invariant mass distributions of $\phi \phi, 2 K^{+} 2 K^{-}$and $\phi K^{+} K^{-}$ final states. Note that if particle identification were required for the $\phi \phi$ channel, the background at lower invariant masses would disappear.
fect the $\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$and $\gamma \gamma \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$ data. Using the published data [12,13] and Monte Carlo simulations we find that these two sources contribute 8 events to the channel $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$and 7 events to the channel $K^{+} K^{-} \pi^{+} \pi^{-}$in the 2.5 GeV to 3.5 GeV region. The background from the reaction $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$amounts to 2 events in the whole 2.5 GeV to 3.5 GeV invariant-mass region for the channel $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$, while this contribution is almost negligibile for the other channels. The sum of the above mentioned non-two-photon background contributions amounts to 2% of all accepted events in the 2.5 GeV to 3.5 GeV region for the channels $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$and $K^{+} K^{-} \pi^{+} \pi^{-}$. Independently, one can check the total amount of non-two-photon background by comparing the simulated $\left(\sum p_{t}\right)^{2}$ distribution to the measured one. We conclude that this kind of background cannot exceed 4\%. Monte Carlo studies show that all of
the discussed background sources have a smooth behaviour in the signal region and thus do not contribute to the number of η_{c} 's as determined by the fit.

Another source of background is due to particle misidentification which leads to a reflection of one channel into the others. Most of the reflected spectrum is a slowly varying function of the invariant mass and is treated together with the continuum part of the channel spectrum. On the other hand, the main resonance structure that can be reflected is the η_{c} itself. Monte Carlo studies show that such misidentified η_{c} events follow a Gaussian-like distribution. For example: between the events which were accepted as $\gamma \gamma \rightarrow$ $K^{+} K^{-} \pi^{+} \pi^{-}$, we expect to find events coming from the channel (2c) centered at 3.20 GeV , with $\sigma=35$ MeV . Using the known values for η_{c} branching ratios, the expected number of misidentified events coming from (2c) is 22% of properly identified events coming from (2b).
The shapes of the η_{c} mass distributions and the acceptances were determined by a Monte Carlo simulation of the two-photon production of the η_{c} according to reaction (1) and subsequent decays into channels (2a) to (2e). The decays were generated according to uniform phase space distributions, except for channel (2d), where the angular distribution for the decay of a pseudoscalar into two vector mesons was taken into account. The cross section used for the generation of events from reaction (1) was a product of the luminosity function for transverse photons [14] and a two-photon cross section, which contains a relativistic Breit-Wigner function for the η_{c} production ($M_{\eta_{c}}=$ $2.979 \mathrm{GeV}, \Gamma_{\eta_{\mathrm{c}}}=10.3 \mathrm{MeV}$ [3]) and a J / ψ form factor for each photon to account for the virtuality of the photons. Since the virtuality of the two photons is restricted by the $\left(\sum p_{t}\right)^{2}$ cut, the results were insensitive to the chosen form factors, e.g. a ρ form factor changes the result for the radiative width by less than 1% for $\left(\sum p_{t}\right)^{2}<0.03(\mathrm{GeV} / \mathrm{c})^{2}$.
The Monte Carlo generated events were passed through the detector simulation program, and were reconstructed and selected using the same programs as for the data. The trigger simulation used thresholds for the detector components as determined from the data. The overall acceptance after applying the cuts amounted to 8.7% for channel (2 a), 7.9% for (2b), 11.6% for (2c), 10.7% for (2d) and 5.6% for (2e) with a J / ψ form factor. According to the simulation
the η_{c} signal for the measured channels can be described by a Gaussian function with σ ranging from 15 to 25 MeV .
The number N_{i} of accepted η_{c} events in the channel i has been determined by fitting the spectra in Figs. 2 and 3. The fit function was the sum of a Breit-Wigner folded by a Gaussian for the signal, terms describing reflections of the η_{c} from the other decay channels, and an exponential function for the background description. The η_{c} mass was taken from [3] while the width of the distribution was fixed to the simulation results. The reflections were accounted for in the fit by using the Gaussian functions as determined by the Monte Carlo simulation with mass, width and normalisation fixed. The fitted number of η_{c} 's in each channel is given in the second column of Table 1 together with the statistical error from the fit. The direct result of the analysis is the product of η_{c} radiative width with the decay branching ratio for each of the decay channels (Table 1). It was calculated using the following formula
$\Gamma_{\gamma \gamma} \cdot \operatorname{Br}\left(\eta_{c} \rightarrow i\right)=\frac{M_{\eta_{c}}^{2}}{(2 \pi \hbar c)^{2}} \frac{N_{i}}{\epsilon_{i} \Lambda d L_{\gamma \gamma}^{T T} / d W_{\gamma \gamma}}$.
The value of the two-photon flux function $d L_{\gamma \gamma}^{T T} / d W_{\gamma \gamma}$ at the η_{c} mass was determined by a numerical integration of the flux of transverse photons including the same form factors as used in the acceptance calculation. The systematic error on the integrated luminosity $\Lambda(1.8 \%)$ is common to all channels i in the above formula. The systematic error of the fit procedure was estimated to be 3% for channels (2a), (2b) and (2e) and 7% for channel (2c). The main uncertainty comes from the determination of acceptance ϵ_{i} which is almost equal for all channels, and amounts to 9%.

Several tests have been carried out to check, whether we understand our efficiency determination correctly. The particle identification was tested by varying the likelihood cuts. The photon rejection procedure was checked by varying the number of photons allowed in the event. Finally, in order to test our simulation in total, the selected sample was restricted to the event topologies, in which the measurement conditions are most stable. In all cases the final results were in agreement within statistics.

For each decay channel the two-photon radiative decay width, as listed in the last column of Table 1, has

Table 1
Results of the analysis of $\gamma \gamma \rightarrow \eta_{c}$. If two errors are given, the first error shown is statistical, the second systematical. In the case of results for two-photon width, the first error is statistical, the second uncorrelated systematical, and the third the correlated systematical error. Upper limits correspond to 95% confidence level.

Channel	Events	$\Gamma_{\gamma \gamma}\left(\eta_{c}\right) \cdot \mathrm{Br}_{i}$ in keV	$\mathrm{Br}_{i}[15,16]$ in ϕr	$\Gamma_{\gamma \gamma}\left(\eta_{c}\right)$ in keV
$K_{S}^{0} K^{ \pm} \pi^{\mp}$	22.0 ± 5.3	$0.281 \pm 0.068 \pm 0.028$	1.78 ± 0.56	$15.8 \pm 3.8 \pm 2.3 \pm 4.5$
$K^{+} K^{-} \pi^{+} \pi^{-}$	13.9 ± 6.6	$0.17 \pm 0.08 \pm 0.02$	2.13 ± 0.68	$8.2 \pm 3.9 \pm 1.3 \pm 2.3$
$2 \pi^{+} 2 \pi^{-}$	21.4 ± 8.6	$0.18 \pm 0.07 \pm 0.02$	1.09 ± 0.37	$16.7 \pm 6.7 \pm 3.5 \pm 4.6$
$\phi \phi \rightarrow 2\left(K^{+} K^{-}\right)$	<3.0	<0.0309	0.171 ± 0.062	<24.1
$2 K^{+2 K^{-a}}$	9.1 ± 3.5	$0.231 \pm 0.090 \pm 0.023$	-	-
$\phi K^{+} K^{-}$	<6.3	<0.152	-	-

${ }^{\text {a }} \boldsymbol{\eta}_{c} \rightarrow 2 K^{+} 2 K^{-}$contains all topological modes except $\eta_{c} \rightarrow \phi \phi$.
been extracted from the measured product $\Gamma_{\gamma \gamma}\left(\eta_{c}\right) \cdot \mathrm{Br}_{i}$ by dividing through the decay branching ratios. These branching ratios, which are also listed in Table 1, have been determined as averages from Mark III and DM2 [15,16]. The quoted errors take into account that these experiments are correlated due to the common use of the branching ratio of $J / \psi \rightarrow \eta_{c} \gamma^{11}$. In addition, the relation $\operatorname{Br}\left(\eta_{c} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right)=2 \cdot \operatorname{Br}\left(\eta_{c} \rightarrow\right.$ $K^{+} K^{-} \pi^{0}$) was used to improve the value for the $K_{S}^{0} K^{ \pm} \pi^{\mp}$ channel. For the $\phi \phi$ final state, the average from all modes from [16] was taken.

Our final result on the two-photon width of the η_{c},

$$
\Gamma_{\gamma \gamma}\left(\eta_{c}\right)=(11.3 \pm 4.2) \mathrm{keV},
$$

was obtained as the weighted average of the first four decay modes. Only uncorrelated errors were considered at this step; the common systematic errors (30%) were added subsequently in quadrature. They include the uncertainty in the branching ratio of the decay $J / \psi \rightarrow \gamma \eta_{c}$ (28%), and the uncertainty in the determination of the acceptance and the luminosity. If we quote the uncertainty of the branching ratio $\mathrm{Br}(J / \psi \rightarrow$ $\eta_{c} \gamma$) separately as a second error, our result reads

$$
\Gamma_{\gamma \gamma}\left(\eta_{c}\right)=(11.3 \pm 2.7 \pm 3.2) \mathrm{keV}
$$

In summary, for four different channels of the $\boldsymbol{\eta}_{c}$ meson we determined the product of the two-photon width times the branching ratio, $\Gamma_{\gamma r}\left(\eta_{c}\right) \cdot \operatorname{Br}\left(\eta_{c} \rightarrow\right.$

[^1]$X)$, the most significant being $\Gamma_{\gamma \gamma}\left(\eta_{c}\right) \cdot \operatorname{Br}\left(\eta_{c} \rightarrow\right.$ $\left.K_{S}^{0} K^{ \pm} \pi^{\mp}\right)=(0.28 \pm 0.07) \mathrm{keV}$. This value is consistent with the world average of $(0.23 \pm 0.08) \mathrm{keV}$. The good particle identification capabilities of our detector made it possible to observe the η_{c} signal also in channels not containing K_{S}^{0} mesons in the final state. The results for the two-photon width as measured in the different channels are consistent with each other and with previous measurements. Combining the results for channels (2a) to (2d) we obtain $\Gamma_{\gamma \gamma}\left(\eta_{c}\right)=$ $(11.3 \pm 2.7 \pm 3.2) \mathrm{keV}$.

Finally, by using our result on $\Gamma_{\gamma r}\left(\eta_{c}\right)$ we obtain the branching ratio $\operatorname{Br}\left(\eta_{c} \rightarrow 2 K^{+} 2 K^{-}\right)=0.021 \pm$ 0.010 ± 0.006. The second error is again the uncertainty originating from the error on the branching ratio of $J / \psi \rightarrow \eta_{c} \gamma$.

It is a pleasure to thank U. Djuanda, E. Konrad, E. Michel, and W. Reinsch for their competent technical help in running the experiment and processing the data. We thank Dr. H. Nesemann, B. Sarau, and the DORIS group for the excellent operation of the storage ring. The visiting groups wish to thank the DESY directorate for the support and kind hospitality extended to them.

References

[1] F.E. Close, An Introduction to Quarks and Partons, Academic Press, 1979.
[2] R. Barbieri, R. Gatto, E. Remiddi, Phys. Lett. B 106 (1981) 497.
[3] Particle Data Group, Review of Particle Properties, Phys. Rev. D 45 Part II (1992).
[4] PLUTO Coll., C. Berger et al., Phys. Lett. B 167 (1986) 120.
[5] TPC/ 2γ Coll., H. Aihara et al., Phys. Rev. Lett. 60 (1988) 2355.
[6] TASSO Coll., W. Braunschweig et al., Z. Phys. C 41 (1989) 533.
[7] CLEO Coll., W.-Y. Chen et al., Phys. Lett. B 243 (1990) 169.
[8] R704 Coll., C. Baglin et al., Phys. Lett. B 187 (1987) 191.
[9] ARGUS Coll., H. Albrecht et al., Nucl. Instrum. Methods A 275 (1989) 1.
[10] T. Živko, Magistrsko delo - Master thesis, University of Ljubljana, Ljubljana (1991).
[11] A. Lange, Dissertation - Doctoral thesis, University of Dortmund, Dortmund (1993).
[12] ARGUS Coll., H. Albrecht et al., Phys. Lett. B 196 (1987) 101.
[13] ARGUS Coll., H. Albrecht et al., Phys. Lett. B 210 (1988) 273.
[14] V.M. Budnev et al., Phys. Rep. 15 (1975) 181.
[15] D. Bisello et al., Nucl. Phys. B 350 (1991) 1; R.M. Baltrusaitis et al., Phys. Rev. D 33 (1986) 629.
[16] Z. Bai et al., Phys. Rev. Lett. 65 (1990) 1309.

[^0]: ${ }^{1}$ DESY, IfH Zeuthen
 ${ }^{2}$ Supported by the German Bundesministerium für Forschung und Technologie, under contract number 054DO5IP.
 ${ }^{3}$ Supported by the German Bundesministerium für Forschung und Technologie, under contract number 056DD1 1 P.
 ${ }^{4}$ Supported by the German Bundesministerium für Forschung und Technologie, under contract number 054ER12P.
 ${ }^{5}$ Supported by the German Bundesministerium für Forschung und Technologie, under contract number 055HD21P.
 ${ }^{6}$ University of Toronto, Toronto, Ontario, Canada.
 ${ }^{7}$ McGill University, Montreal, Quebec, Canada.
 ${ }^{8}$ Supported by the Natural Sciences and Engineering Research Council, Canada.
 ${ }^{9}$ Supported by the German Bundesministerium für Forschung und Technologie, under contract number 055KAIIP.
 ${ }^{10}$ Supported by the Ministry of Science and Technology of the Republic of Slovenia and the Internationales Biro KfA, Jülich.

[^1]: ${ }^{11}$ Note that in the 1992 Review of Particle Properties [3] the average values for branching ratios were calculated as if the results from the different experiments were not correlated. There is also a numerical error in the listed value for $\operatorname{Br}\left(\eta_{c} \rightarrow K \bar{K} \pi\right)$.

