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AbstracI. The master equations for the random neighbour Bak-Sneppen model are solved 
explicitly. 

1. Introduction 

Recently, Bak and Sneppen proposed a model of biological evolution [I, 7.1. It is a dynamical 
system describing the mutation and natural selection of interacting species. The most 
interesting point in this model is the phenomenon of self-organized criticality which is 
studied intensively by means of several different numerical and analytical methods [3-6]. 
Self-organized criticality is the asymptotical critical behaviour in dynamical systems which 
is achieved without any external fine tuning of their parameters [7]. One can hope that 
the Bak-Sneppen model (BSM) represents an important universal type of critical behaviour 
which is realized in many dynamical systems independent of their detailed properties. It 
would be natural to expect this from the point of view of present experience in studies of 
critical phenomena. 

The formulation of BSM is simple. It describes an ecosystem of N species which has a 
state defined by the set ( x t ,  . . . , X N )  of N numbers, 0 < xi < 1. The state of the ith species 
xi is called the barrier; it characterizes the effective banier towards further evolution of the 
species. The BSM dynamics is the following. Initially, each x ,  is set to a randomly chosen 
value. At each time step the barrier xi with minimal value and K - 1 other barriers are 
replaced by K new random numbers. In the random neighbour model (RNBSM) the (K - 1)- 
replaced non-minimal barriers are chosen at random. In the local or nearest-neighbour 
model (LBSM) these are the barriers of the nearest neighbours to the species with minimal 
barrier. In this version of the BSM the nearest neighbours of the species are assumed to be 
defined. 

The study of LBSM is more complex compared to the RNBSM because of the non-trivial 
topology of the interspecies interaction in the LBSM. The analytical study of the BSM is 
based mainly on the mean field approximation [2,3,6]; some exact results are obtained for 
the RNBSM [3]. In this paper we obtain the explicit solution of the master equation used 
in [3] for the study of the RNBSM. We consider these equations for the case of an infinite 
ecosystem with an infinite number of species (in the thermodynamic limit) only. The exact 
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stationary solution of the RNBSM master equations obtained in [3] is the asymptotic of the 
time-dependent solution which is constructed by us. 

2. Statement of the problem 

The basic quantity used in [3] to study the RNBSM is the probability that at time f the number 
of barriers that have values less then a fixed value h is n.  It is denoted in [3] as P,(t) and 
fulfils the following master equation representing the dynamics of the RNBSM: 

Pn(t + 1) = h2Pn-l(t)  + 2h(l - h)Pn(t)  + (I - h)'Pn+1(t) n > 3 
40 + I )  = h2Pl(t)  + 21(1 - h)P'(t) + (I - h)2P3(t) + hZPO(f) 

(1) 
Pl(t + 1) = 2h(l - h)Pi ( t )  + (1 - h)'Pi(t) + 2h(l - h)Po(t) 

Po(r + 1) = (1 - h)'PI(r) + (1 - A)'Po(r). 

The initial values P,(O) at t = 0 are assumed to be given. Equations (1) define the values 
of probabilities Pn(t) for r > 0. These can be considered as the complete specification of 
the RNBSM dynamical rules. 

It is convenient for us to rewrite the system of equations (1) in the form 

P,(t+ 1) = UP&) + bP.+I(r) + cP,-l(t)(l - &,o) + ((YS,,O+ B&,I +yS,,dPo(r) (2)  
where 

a = Z h ( l - X )  b=(I-?.)' c = h  2 

2 (3) ( ~ = ( l - h ) ( l - 3 3 h )  B = h ( 2 - 3 h )  y = h .  

By virtue of (3) 

U + b+ C =  1 (Y + B + y - b = 0. 

Hence, it follows from (2) that the common necessary condition for probabilities P,(t) is 
(4) 

In the more general case, when there are no representations of the form (3) for the parameters 
of dynamical system (2) but relations (4) are fulfilled, P,(t) could be treated as a probability. 

By introducing the operator 

Dm,,(f, t ' )  = dl+l.I,dnr." - &,,,Lm." (5) 
where 

Thus, if the solution Am,,(t, t') of the operator equation 

D A = I  

is found, the solution of equation (6) can be constructed as 
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Hence, the problem of solving the master equations is reduced to an inversion of the 
linear operators D (5). There is no obvious transformation which diagonalizes D directly. 
In this case the inversion of D would be trivial. However, the important property of operator 
A, which makes the problem of its construction solvable, is that Am," for n # 0 can be 
expressed in a simple way through A o , ~  and the equation for Ao," can be solved explicitly. 

3. Modified equations for A 

Let us define the auxiliary operator 

e(t - t'). 0 1 f dz(a + bz-' + CZ)~-"-' 

Zm-n+l A,,,(t,  t') E - 
2n i 

Here, by definition, 

e( t )  = o for t < o e ( t )  = I for t > 0. 

Multiplying both sides of equation (7) by A', one obtains an equation of the form 
A o D A  = A'. 

If the operator V is defined as 
A O D  = 1 - v 

Vm,,(t, t') = vmv. tW0 .n  

one can verify directly that 

where 

Thus, by virtue of (1 1) and (12). equation (10) can be rewritten as 
0 Am." - vmA0.n = Am,n.  

Setting m = 0 in (14), one obtains the equation for Ao,": 

do,. - v 4 0 . n  = A& 

The main result is that to solve equation (14) for the matrix operator Am." it is enough 
to find the solution of equation (15) for A o , ~ .  If A o , ~  is known, the matrix elements Am.n 
for m # 0 can be constructed as 

Am," = VmA0.n + A i , , .  (16) 

4. Useful integral transformation 

We introduce a special integral transformation (SIT) for functions of a complex variable, 
which will be necessary to solve equation (15). Its definition for the function f ( z )  is 
written in the form 

Here, the integration contour is the circle IzI = r of the radius r with the centre at z = 0, U 

is a parameter. It is assumed that the integral on the right-hand side of (17) exists. We shall 
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consider the SITS as functions of integer variables. For the SITS we define a convolution 
operation as 

For such defined SITS the following simple lemmas can be proven. 

Lemma I .  If the function f(z) is analytical for z # 0, L # 00 and 

fR(d = f ( 2 - I )  .f $(f + fR) 
then 

S(f1 = Iy{fR) = I:{.?). 
Lemma 2. If the functions f(z) and g(z) are analytical for IzI < r ,  then 

1,"lfI * I,y{gl = s{f *d 
where 

With the help of the SITS, equation (15) can be solved explicitly for Ao,,. They are also 
convenient for constructing the matrix elements of operator A from (16). 

5. Exact solution of equations for A 

It follows from definition (9) that the operator A' is proportional to the SIT of a power 
function: 

(18) 

(19) 

~ : , , ( t ,  t ' )  = U,,,&- ~')I;{z"+" 
where 

U ( t ,  ~ c(m-n+r-i'-l)/2b("-mtl-t'-1)/2 ~ - a 

&' m." 

From (13) one obtains a similar representation for the operator V , :  

V, = Um,oI,Y[z-'"Q(~)] Q(z) E 01' + B ' Z  + Y'Z' - b'z-'. (20) 
Here 

By virtue of lemma 1 the operator VO is represented by the SIT of a polynomial function: 

Vo = UO,OI~(Q(Z)) = Uo,oI~(q(z)} S(Z) U'+ @' - b')z + Y'z*. (21) 

A0.n = u~,nI:I fn(~) l .  (22) 

Thus, it is natural to suppose that the operator Ao." has a representation of the form 

It is assumed here that the function f,(z) is analytical for IzI k- r .  By using (10 ,  (19). (21) 
and (22), equation (15) can be written as 

1 
P I,V{f"(Z)l - -1:MZ)) * I;(f"(Z)l = Irrr, P = JG 
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It is fulfilled if 

The solution of this equation 

is obviously an analytical function for IzI < r if the parameter r of the SIT is chosen to be 
sufficiently small. Thus, we obtain the solution of equation (15) in the form 

Substituting (20) and (23) in (16) and by use of lemmas 1 and 2 we obtain the following 
representations for the other matrix elements of A: 

Here ql (z), q2(z) are the polynomials 

~ I ( z )  s B' + ((U' + Y ' )Z  - b'z' 
qz (2 )  3 y' + P'Z + [Y'z' - b'z' 

and the parameter r of the SIT is defined as 

P(I - 2) - q(z)z # 0 for (ZI < r. 

By using (3), the operator A for the original master equations (1) can be represented as 

Here, the integration contour i s  the circle IzI = r ,  r < A/(l -A) .  
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The integrals can easily be calculated in the case of h = 1/2: 
Z ( t  - t' - l)! 

(t - t ' +  m - n -  I)!(t -t' - m + n  - l)! 

(2(t - t') - 3)!  
1 2(t - f' - l)! 

(t - t'- m - n ) ! ( t  - r'+m + n  - 2)!  
2(t - t' - I)! 

(r - t ' - x ) ! ( r  - t '+n - 2)!  
(2(t - t') - 3)!(3(r - t')' - IO(? - t') + nz - 3n + 8) 

( 1 - t ' - n ) ! ( t - t ' + n - l ) !  

Am,*@, t') = 4l-'*" 

+ 
+ (t  -I' - n - Z ) ! ( t  - t '+n - 1)! ( 

( 

I-ltl' Ai,n(t, t') = 4 

- 41-1+1' - 
2(t - t' - I ) !  

(t - t ' - n  - l)!(t - t ' + n  - l ) !  

) (2(t - t') - 3)! 

I - t t l '  Ao,n(t, t') = 4 

- 
(t  - t' - n - 2)!(t  - t ' + n  - l ) !  - 4'-1+1' ( 2 0  - t ' ) - 3 ) ! ( 1 - t ' + n - 1 )  - 

( t - t ' - n - l ) ! ( t  - t ' + n - l ) ! '  
For h # 1/2 the following asymptotic forms of A(t ,  t') can be obtained fort -r' -+ 03: 

x ( m  + E) ( n  + E) + o(t-712) 
2h - 1 2h - 1 

if h > 112. 

6. Conclusion 

The solution obtained for A can be verified by its direct substitution in equation (7). The 
asymptotic forms of P,( t )  (24)-(29) are in agreement with the results of [31; for t -+ 03 
these can be calculated with help of (8). 

In our paper we only considered the main mathematical problem arising for the 
description of self-organized criticality in the framework of RNBSM; however, our results 
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allow us to calculate all the quantities of interest for the understanding of critical phenomena 
in RNBSM. We hope that they will be useful for analytical and numerical studies of self- 
organized criticality in more complicated models. They could also be helpful for the 
elaboration of renormalization group methods for the BSM [8,9]. 
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