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Abstract 

We investigate the static quark-antiquark potential up to distances of 8 lattice units for pure 
SU(2) gauge theory on lattices with anisotropic couplings. The action is the Wilson action 
with a coupling for time-like plaquettes which differs from those for space-like ones. Numerical 
simulations are performed in a large range of/3. The potential is obtained by fitting "cooled" 
Wilson loops with up to four exponential terms. An interpolation of the potentials by a sum of 
a perturbative term, a linear term and by lattice artifacts shows poor scaling in comparison with 
the isotropic case. If the coupling in the time-like region is reduced, the linear term is much 
smaller than in the isotropic case, and vice versa. Consequences for the bag picture for hadrons 
are discussed. 

1. Introduction 

The potential between static charges in non-abelian gauge theories is a physical 
quantity of  considerable interest. This holds, of  course, especially for the region where 
the potential is rising almost linearly, since the linear rise is of  crucial importance for the 
understanding of  quark confinement. But also the details in the transition region towards 
the short range, Coulomb-l ike behaviour may have phenomenological implications, e.g., 

on the spectra of  heavy quarkonia, and they are relevant for fundamental questions. 

One of  those is whether the linear contribution extends down to small distances, like 
in bag models [ 1--4] and in a phenomenological parametrization of the potential [5] ,  
or whether there the perturbative expansion converges, at least in a practical sense. 
The first case could be realized in such a way that the perturbative expansion in the 
renormalized, running coupling constant is asymptotically converging, and that terms 
decreasing exponentially fast in the inverse coupling constant are numerically non- 

negligible even in the continuum limit. 
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The potential in this region can be calculated, with small errors, by Monte Carlo lattice 
simulations. Especially for the case of pure gauge theory and for SU(2), a remarkable 
statistical accuracy can be achieved. The simulations performed so far [ 6-8 ] have clearly 
demonstrated the dominance of a linear term at large distances, i.e. where the perturbative 
expansion makes no sense, and of the Coulomb-like potential, with a running coupling 
constant, at small distances. A linear term seems to persist down to small distances, 
but its magnitude is, to some extent, a matter of parametrization. Its phenomenological 
implications in the transition region are perhaps not too dramatic. Anticipating the 
lattice results to be described below, the non-perturbative term contributes to the quark- 
antiquark force by about 15% at a distance of 0.25 fm, with an increasing trend towards 

larger distances. 
The variation of the potential as a function of the bare lattice coupling constant 

poses certain difficulties for a convincing interpretation. The results of all simulations 
agree in so far that this variation does not follow the predictions of two-loop perturbation 
theory i.  The departure can be a consequence of the fact that if we consider the renor- 
malized, running coupling constant ce(R), including two-loop corrections, as expansion 
parameter for the perturbative series, the parameter is not small compared to unity in 
the region of interest. This hold at least for separations of the charges R / a  > 3 say 
at intermediate values of g02 (a is the lattice constant). This large expansion parameter 
could well lead to a scale differing from the perturbative one. Another, more radical 
interpretation could be that the linear contribution in the transition region is a lattice 
artifact which vanishes in the continuum limit ~ ~ 0. 

The magnitude and the g02-dependence of a non-analytic term can of course be studied 
directly for Creutz ratios, Xt, without the need for complicated extrapolation procedures 
as for the potential (see Section 4 in this context). It has been shown in [8] that many 
Xt, including those with a geometry l closely related to the potential, can easily be 
represented 2 by few terms in a ( l ) ,  if a non-perturbative term Xt,np is added, with a 
typical variation 

Xl,np "~ exp(-Yl/g~),  ( 1 ) 

where Yt depends on the geometry l of the Creutz ratio under consideration. The l- 
dependence of such terms is consistent with an area term, but the factor Yt turned out to 
be inconsistent with this interpretation, being too large for all ratios, and pointing again 
towards a vanishing of XI,np in the continuum limit. 

It is quite difficult to test the hypothesis of a decreasing linear term in the potential by 
further lowering g0 z, because of the necessity to increase the lattice volume proportionally 
to the exponentially increasing lattice scale and, even more demanding, to measure 
the potential at an increasing distance. Therefore, other methods to study systematic 
effects on the lattice will be helpful. In this paper we will present the results of lattice 

l This is called a departure from asymptotic scaling. 
2 Formally, expansions in the running coupling a(l) are always possible in view of finite errors of the Monte 

Carlo data, but at the expense of large and oscillating higher order coefficients. 
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simulations in pure SU(2) gauge theory based on an action different from the standard 

Wilson action. We consider lattices with different scales in space-like and in time-like 
directions, obtained technically by multiplying the contribution to the action of those 
plaquettes with one time-like link by a different factor as the space-like plaquettes. In 
the isotropic case this factor is/3 = 4 / ~  and here we take 

/3, = (2/3. (2)  

The action, written in a way to indicate necessary scale transformations, is then 

( 1  Z +(~---~,) tr 5(1-IIv, . (3) 
S = ( #  ( space time plaq 

On the classiceal level, the (-factors in front of the sums will be removed by scale 

and gauge field transformations along the time directions, and the leading (-factor by a 
change in the coupling constant. For ( ~ c~ we approach the Hamiltonian limit of a 
continuous time variable 3. Based on the perturbative study of the static potential, to be 
discussed in the next section, the potential will then be derived from the usual Wilson 
loops W ( R , T )  via 

• 1 In W ( R , T )  
a V ( R )  = - ( l i r n  a W(R,T - a)" (4) 

Here a and V(R)  can be taken either in lattice units or in physical units. 
Qualitatively, in the case of ( > 1, the effect of such a change on the lattice gauge 

fields will be a reduction of the field fluctuations along the time direction. This reduction 
will of course couple back to the spatial directions, and in order to obtain the same 
physics as in the isotropic case, one has to consider a bare coupling constant differing 
from ~ ,  both by a (-dependent factor 4 and by an additive shift to the inverse coupling. 
The latter operation is equivalent to a multiplicative change in the connection of the 

scale parameter for a physical quantity, (here, for the potential, AR) and the lattice scale 
parameter Alatt. These transformations are calculable in one-loop perturbation theory. 

With their help it should be possible to absorb the anisotropy effects into (-dependent 
scale factors not deviating too strongly from the perturbative ones. The Monte Carlo 

data to be presented here show that this is not the case. If  we calculate a perturbative 
contribution to the potential with a running coupling constant based on the perturbative 

scale parameters and include a second order contribution with a free coefficient, the 

data require, without doubt, the inclusion of a linear non-perturbative term. This linear 
contribution can be determined independently from a fit to the R-behaviour of the 
potential at fixed/3 or from the/3-behaviour at fixed R, with similar results. The scale- 
dependence of the linear term, however, differs from that of the perturbative term, and, 

3 Anisotropic lattices have been studied previously mainly in connection with Monte Carlo simulations at 
finite temperature [9,10] where the finer granularity in the time direction is helpful. 
4 This will then allow to use the standard renormalization group connection between the bare coupling and 

the renormalized one 
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more importantly, it is strongly ~-dependent. Especially, for ~: < 1, we find a strong 
reduction as compared to the isotropic case. A speculative explanation is that in this case 
one encounters a strong suppression of negative plaquette values in space-like directions, 
and we believe this case to be closer to the continuum case as the case ~: > 1. A possible 
and simple conclusion is that the linear term, which shows up in most numerical analyses 
of lattice data, is a lattice artifact and that it may vanish in the continuum limit. 

Indications for such violations of scaling are not easily visible from a direct com- 
parison of potentials belonging to different actions since the discreteness of the lattice 
is very disturbing if the scale parameters do not match perfectly. In order to overcome 
this, we have to interpolate the Monte Carlo data, and to correct for the effects of finite 
lattice spacing at small R/a. There perturbation theory will be a good guide, and we 
will describe the perturbative expansion of the potential in the next section. More details 
will be given in Appendix A. For moderate R/a, there is no well-founded interpolation 
formula especially for the transition between the perturbative regime and the confining 
one. In Section 3 we argue in favour of a simple addition of a perturbative and of a 
linear term. 

The Monte Carlo data and the results from the interpolation procedure will be de- 
scribed in Section 4, and Section 5 contains a discussion and conclusions. 

The data have been taken on a variety of parallel computers, and in Appendix B 
we will shortly indicate the methods of parallelization and report on the performance 
achieved. 

2. Perturbation theory on anisotropic lattices 

2.1. Overview 

The perturbative expansion of the potential, up to one-loop accuracy, will fix the 
rescaling of the potential (4),  the rescaling of the coupling constant and of the A- 
parameters for anisotropic lattices, and it will give information on the lattice artifacts at 
small R/a beyond the tree level. For this purpose the formulas given by [ 11,12] will be 
generalized. We start from the action (3) and expand with respect to ~ = 4~ft. After 
a rescaling of time-like gauge fields on an anisotropic lattice of size V¢ = s~L × L 3 we 
obtain, for L ~ oo, the classical action in momentum space: 

+~ If d k  4 F 2~2  ~ A21 
So = ~ (2~.)-------- ~ ~ a~(k)a~(-k) I~ ko + ~_, ki / '  (5) 

--~r /.~=0,3 L i=1,3 j 

where k,- = 2 sin k~/2, and the last bracket in (5) is the inverse anisotropic propagator, 
D~l(k). The details of the intermediate steps, including gauge fixing, are given in 
Appendix A. 

In order to obtain a closer connection to the isotropic case, one can transform the dko 
integration and introduce a bare propagator D~(k) by the substitution 
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] +/ dko = ~- l  dkoD~(k), 

+ 2;02 + 
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(6) 

with 

1 
D~(k) A • (7) 

~2 ko/~ 2 + ~i=t,3 ToP 

This propagator deviates from the isotropic one starting in O(k04). The contributions 
to the one-loop approximation to the the potential are the following [ 11,12] : 

(i) the Wilson-loop expansion, 
(ii) the triple-gluon coupling, 
(iii) the quadruple-gluon coupling, 
(iv) the Faddeev-Popov determinant. 
(v) the measure contribution. 
The spider graph, which contributes to Wilson loops, vanishes for the potential, when 

Feynman gauge is employed. We will list the individual terms in Appendix A. 
For a basic understanding, one has to identify the influence of the anisotropy on the 

tree-level potential, next on those terms of the one-loop potential proportional to the tree 
level, and especially of the logarithmic corrections on one-loop level. This will be done 
both in momentum- and in x-space. The summary of the results is that the anisotropy 
will modify the Wilson loops, for fixed ~ and in the limit of large R and T, or the 
potential at small momenta, in the following way: 

(i) On tree level, the Wilson loops will be multiplied by a factor s ¢-2. 
(ii) On one-loop level, the terms proportional to tree level will be modified by a 

complicated ~:-dependent factor, which has to be evaluated numerically. 
(iii) Also on one-loop level, the terms logarithmic in R will be multiplied by a fac- 

tor ~:-3. 
These factors can be eliminated by the following redefinitions and scale transformations: 

(i) From the factor s c-2 on tree level, one ~:-l will be absorbed by the anisotropic 
connection between the Wilson loops and the physical potential (see Eq. (4)).  

(ii) Another factor ~:-1 will be absorbed into the bare squared coupling constant, 

g+ _+ +g = ggo (8) 

(iii) 

Thus, the logarithmic terms expressed in O ( ~  4) experience no further modifica- 
tion. 
The complicated modifications of the terms in O(g 4) proportional to the tree-level 
potential will be absorbed into a redefinition of the connection of the parameter 
AR and the lattice parameter Alatt where the latter is expressed in the usual form, 
but as function of g~2 (see (12)). 
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To consider only the momentum space representation of the one-loop integrals given 
in Appendix A, Eqs. (A.14), (A.15), etc., is of course much simpler than to evaluate 
those intergrals completely in R-space. Especially the Aq-parameter for the potential in 
momentum space can be accurately obtained by taking the limit q2 ~ 0 and comparing 
the numerical result with the expression of the continuum in order g4, 

q2 t4o 0 q2 
Vone_ loop (q  ) - J:-2C --g4fl° In - - = C  g°prT In  - - ,  (9) - - ~  r q2 Aq2 A 2 

with 

N 2 - 1 l l N  
Cr -- 2 ~  ' flo - 487r 2, (10) 

and N is the number of colours. Thus, the numerical evaluation of the integrals over 
k of (A.14), (A.16)-(A.28),  keeping q fixed, yields the parameter Aq, and this gives 
after conversion to R-space, for s c2 :~ 1, 

49.86 Alatt, ~:2 = 3/2 
A(,R = 67.64 Alatt, ~:2 = 2/3 (11) 

with a lattice parameter Alatt depending on the modified coupling constant (8),  

Alatt = a -1  ( f logo  2 ) -/31/2/3°2 exp( - 1/2f10g~2), (12) 

with 

fit = 136/3(47r) 4. (13) 

For the force parameter AF we obtain [ 13,14] 

18.33 Alatt, ~:2 = 3/2 
A(,F = 24.88 alatt, ~:2 = 2/3 (14) 

to be compared with the isotropic case [ 13,14] 

A~=I,F = 20.77Alat t .  (15) 

We will use these values for the specification of the perturbative potential, to be presented 
in Section 3, apart from the lattice artifacts. 

In what follows, the suffix ( will be dropped again for the A-parameters. 

2.3. Lattice artifacts 

The tree-level artifacts are unchanged with respect to the isotropic case (~ = 1) 
apart from the normalizing factor s c. To obtain the one-loop corrections, we have to 
insert the AR-parameter, determined previously, into the continuum formula (9) and 
compare it now, at fixed R, to the full 7-dimensional integrals (A. 14)-(A.28), specified 
in Appendix A. The main result is that 
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Table 1 
Display of lattice artifacts, normalized by the Coulomb potential 
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(2 = 3/2 ~2 = 1 ~2 = 2/3 

R/a a l (R)  a2(R) a3(R) a2(R) a3(R) a2(R) a3(R) 

1 0.081 0.0150 0.0040 0.0156 0.0050 0.0163 0.0060 
2 0.077 0.0169 0.0088 0.0181 0.0100 0.0195 0.0115 
3 0.038 0.0079 0.0025 0.0085 0.0033 0.0093 0.0040 
4 0.019 0.0038 0.0020 0.0042 0.0025 0.0045 0.0030 
5 0.011 0.0021 0.0008 0.0023 0.0012 0.0025 0.0016 
6 0.007 0.00 ! 3 0.0 0.0013 0.0 0.0014 0.00 

- the artifacts in one-loop order do not follow closely the pattern of the tree level, but 
are enhanced for R/a ~> 2 as compared to R/a = 1, 

- there is an inceasing trend, in the order of 10%, in the artifacts between ~:2 = 3/2 and 

= 2 / 3 .  

In later applications, we will use an expansion of the artifacts with respect to the bare 

coupling constant: 

Cr glo2 
Vcorr( R) = ----~--~( al( R) + az( R)g~o 2 + a3( R)g~o4), (16) 

where a3(R) is unknown. We will fit it to the most exact Monte Carlo data at large/3, 
where the contribution from the linear term is negligible (assuming asymptotic scaling). 
This is done for s c2 4 :1  only, since for ~:2 = 1 such large/3-values are not available. 

There, a3(R) is obtained by linear interpolation. The tree-level terms a~ (R),  the one- 
loop results a2(R) and the fit results for a3(R) are given in Table 1. 

It is clear from the one-loop results in Table 1 that the expansion (16) is not neces- 
sarily converging well for gl2 = (.9(1), similarly as the potential itself. Since the shape 

of the corrections, as in functions of R, varies from order to order, a straightforward use 
of the renormalized coupling instead of the bare one seems to be unjustified. It should 
be noted, however, that the contribution from a3(R) is larger than the errors of the 

Monte Carlo data only by a factor 10 or less, so a careful treatment of this term is not 
necessary. 

Of course, there is considerable uncertainty against a simultaneous variation of the 

perturbative parameters, especially of a necessary higher order coefficient c2 (see Eq. 
(18) below), and of the lattice artifacts. In Section 4 we will return to this problem 
and study the window in which both quantities can be varied without violating some 

side conditions, among others the /3-variation of the higher order coefficient and the 
/3-variation of the linear term. It will turn out that the main result of this paper, namely 
the strong dependence of the linear term on s c, is unchanged if the parameters are varied 
within this window. 
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3. On the description and interpolation of lattice results 

Both for a check of scaling properties and for the separation of perturbative and 
non-perturbative terms, an interpolation of the lattice data is necessary. Unfortunately, 
interpolation formulae are ad hoc, given the present lack of understanding, and we can 
only give a few heuristic arguments for or against special parametrizations. 

A central question is whether we insist on describing the lattice potential V(R/a) 
(or the lattice force, i.e. the finite differences of the potential), in terms of an effective 
running coupling constant Oteff(R ) plus a lattice artifact correction at small R/a (see 
[ 15-18] ). Our experience is that this does not work if we take Oteff(R/a) to be close to 
the perturbatively renormalized coupling constant (defined below in (19)) .  The reason 
is connected with the very precise Monte Carlo force at small R, which rises with 
decreasing fl more rapidely than allowed by a low order polynomial with decreasing 
coefficients. 

An alternative route, which takes into account the latter effect, is to explicitly add 
a term which is non-analytic at g02 = 0, e.g. a term ~ e -r/g~. Then the running cou- 
pling constant or(R) can easily be connected with g~ by the standard renormalization 
group procedure. It has been shown recently by direct computation of the renormalized 
couplings [ 19,20] that this is possible provided the scales are chosen correctly. The 
incorporation of a non-perturbative term has been advocated recently in [21], albeit 
with the full string tension and not with a reduced one, as we will propose below. 

A third possibility is to define an expansion parameter directly by some Monte Carlo 
data, most easily by the average plaquette value [22]. In this way non-analytic terms 
are included, to some extent, in the expansion parameter. 

We first describe the second route, which we will use in this analysis. 

3.1. Lattice perturbation series plus string tension 

Of course the inclusion of a non-analytic term into the ansatz for the potential is only 
sensible if the term has a simple structure in R or in momentum space. Here we assume 
that it is to a good approximation linear in R, which means that in Fourier space it is 
concentrated at very small momenta. 

The perturbative lattice potential (apart from small R/a corrections) will be written 
as a second-order polynomial in the R-dependent coupling tr(R), by integrating the 
force, 

R 

= V 0 q - / d g t F p ( R t ) ,  ( 1 7 )  Vp(R) 
. 8  

Ro 

with 

CR Fp(R) = ~ o~(R) (1 + c2oL(R)). 

We take the running coupling constant in two-loop approximation 

(18) 
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{[ ]}-' /31 InR2A~.) , /31 136/3(4¢r) 4. (19) or (R)= 4 ¢ r - / 3 0 1 n R 2 a ~ + ~ - 0 1 n  ( -  = 

The second-order coefficient, c2, will be fitted to the data at each/3 individually, and it 
should come out rather as a constant. The scale parameter for the force, AF, is related 
to the lattice scale parameter Alatt as given in Eq. (14). 

Before we can discuss a possible modification of (19) at large R, where a (R)  
becomes singular, the confining force has to be specified. A working model for con- 
finement may be the non-linear version of Maxwell's theory proposed by Adler [3,4]. 
The essential content of such models is that the vacuum does not support weak fields 
originating from static charges. The field configuration around a dipole charge will have 
a perturbative region with strong fields, and a vacuum region with zero fields. The 
transition takes place where the electric field strength I E [ drops to a critical value E0. 
This occurs at a distance r¢ from the center between the charges 

rc "~ (eR/Eo)1/3 ,  (20) 

where e is the charge and R the separation of the charges. The perturbative field energy 

outside rc is 

e2 R 2 
Vc(R) ,,~ r--y-- c ~ eEoR. (21) 

Without posessing a more detailed picture, the most natural assumption is that it is this 
fraction of the total field energy which is modified by confinement, in the sense of 
a redistribution of the electric flux lines. This will lead most likely to a modification 
of (21) by a constant numerical factor. We thus get a modification of the Coulomb 
potential by a term linear in the separation of the charges. The same principal result is 
obtained in the bag model [ 1,2], although with a somewhat different argumentation. 

We thus assume that a quantitatively reasonable fit to the static potential can be 
obtained by the ansatz 

V( R) = Vp( R) -Jr- Vcorr( R) 4- KrR, (22) 

where Vcorr(R) are the lattice artifact corrections, which are relevant only for R / a  <~ 4. 

This ansatz contains the parameters l,b, c2 and Kr, which will be determined indepen- 
dently for all/3. The potential is scale invariant, if Kr cx A2F (see Eq. (14) ), i.e. if Kr 

is non-analytic in ~0. We call Kr the reduced string tension, since it will be most likely 
smaller that the full string tension, according to the following argument. 

The representation (22) becomes meaningless for increasing R--at  the latest--at the 
point where the perturbative potential Vp increases stronger than linearly, a behaviour 
which is theoretically inconsistent with the transfer-matrix property of Wilson loops. 
The latter does not allow a faster than exponential decrease, with positive coefficients, 
of Wilson loops W ( R , T )  both for R fixed, T ---* c¢, and vice versa. An exponential 
decrease of the form exp ( -TRT)  is therefore the strongest decrease allowed. A working 
assumption is then to continue the perturbative potential linearly starting from the point 
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where the renormalization group improved potential becomes linear anyhow. One thus 

would interpret the sum of the linear continuation and Kr as the physical string tension. 
In the analysis to be presented here we will not use values of R beyond the point 

where the slope of the perturbative force changes sign. This occurs, for /3 = 2.2 and 
s c2 = 3/2, at R/a  ,.m 10. Of course this value is dangerously close to the maximal value 

R/a  = 8 used in the analysis, but due to the larger errors for the last point, its influence 
on the fits is quite limited. Omitting it from the fit does not change the results by more 
than half a standard deviation. 

3.2. Using an effective coupling constant 

An alternative interpretation of numerical lattice data on the potential is in terms of an 
effective running coupling constant Oleff(R ) [ 15-18]. There the complete lattice force 
F ( R )  is written, apart from lattice artifacts, as a generalized Coulomb term: 

CR 
F(R)  = ~-ae i r (R) .  (23) 

This representation even can be used, after Fourier transforming, to describe the confining 
region by introducing a pole of the coupling constant at q2 = 0: 

1 
Ceeff(q 2) ~ q-~. (24) 

Formally, such a representation is always possible, and it will lead to an accurate 

determination of aef~(R). If  the assumption made in the previous subsection about the 
existence of a non-perturbative linear force is correct, the latter is to be incorporated in 
the coupling constant 5. After the coupling constant has been derived from the force, 

one requires the determination of a scale parameter at every r-value. This can be done 
from the Monte Carlo data for the string tension [ 15,17,18] or for the average plaquette 
value [22]. Since also the latter may have a non-analytic contribution, a significant part 
of this can be incorporated into the expansion parameter. This leads to a definite, but 
not complete reduction of the departures from asymptotic scaling [ 23 ]. The distribution 
of plaquette values P extends, at present /3, well below P = 0, and suppressing the 
negative plaquette values in the action changes scales significantly [24]. We therefore 
hesitate to attribute a universal significance to such contributions. 

4. Monte  Carlo data and results 

4.1. The lattices 

Monte Carlo simulations have been performed on a variety of MIMD-parallel com- 
puters with distributed memory. Some implementation and performance details will be 

5 We regard it as an open question whether aeff determined in this way is useful as a general purpose 
expansion parameter. 
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Table 2 
Overview over new lattice data on anisotropic lattices and on older ones on isotropic lattices 
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fl # of s ¢2 Lattice Number Size of 
set size of sweeps loops 

2.2 ! 3/2 243 x 64 70.000 8 x 12 
2 483 x 80 12.100 12 x 16 

2.3 3 123 × 32 17.700 6 x 10 
4 243 × 64 118.000 8 x 12 

2.4 5 123 x 32 56.500 8 x 10 
6 243 x 64 60.000 8 x 12 

2.5 7 243 x 64 61.000 8 × 12 
8 323 × 128 13.000 8 x 12 

2.6 9 243 x 64 29.000 8 x 12 
2.7 10 123 x 32 28.000 8 x 12 

11 243 × 64 40.000 8 x 10 
12 243 x 64 10.000 8 × 10 

2.8 13 323 x 64 29.000 8 x 12 
14 483 x 80 20.000 12 x 16 

2.9 15 243 x 64 64.000 8 × 12 

3.3 16 2/3 243 x 64 22.000 8 x 12 
3.4 17 243 × 64 10.000 8 x 12 
3.8 18 243 x 64 14.000 8 × 12 

19 323 × 128 16.000 8 × 12 
5.0 20 483 x 32 3.000 8 × 12 

2.7 21 1.0 244 50.000 10 x 12 
2.8 22 242 × 322 110.000 12 × 12 

2.85 23 483 x 56 ~ 105 see [6] 

g iven  in A p p e n d i x  B and  in re fe rences  q u o t e d  there.  We  upda te  the  la t t ice  in a checker -  

b o a r d  sequence ,  w i th  a m i x t u r e  o f  hea tba th  and  over re laxa t ion  s teps in  the  ra t io  1:8. 

D a t a  have  b e e n  t aken  o n  var ious  an i so t rop ic  la t t ices  at f l -va lues  and  la t t ice  s izes  as 

g iven  in Table  I. F o r  the  da ta  sets  w i th  s c 4: 1, the  b o u n d a r y  c o n d i t i o n s  were  pe r iod ic  

in the  l o n g  t i m e  d i rec t ion ,  and  twis ted  in the  spat ia l  d i r ec t ions  [ 2 5 ] ,  i.e. 

U~(t ,x  + Lx, y , z )  = 7xUu(t,x,  y ,Z)rx ,  ( 2 5 )  

and  s imi l a r ly  for  y and  z,  w h e r e  the  S U ( 2 ) - m a t r i c e s  Uu are t aken  in the  Pau l i - r ep resen-  

ta t ion.  I t  is k n o w n  tha t  th i s  t r ick  reduces  the  f ini te  v o l u m e  errors  in Creu tz  ra t ios  con-  

s iderably .  T h e  da ta  sets  #21 and  #23  ( t h e  la t ter  is f r o m  Ref .  [6 ]  ) use  pe r iod ic  b o u n d a r y  

cond i t i ons ,  whe reas  for  #22  the  twis t  is for  the  shor t  d i r ec t ions  only. P lana r  W i l s o n  

loops  6 wil l  be  der ived  f rom a coo led  conf igura t ion ,  o b t a i n e d  by  repea ted  subs t i t u t ion  

Uu(x) ~- -Tasu(2)[2xUu(x)+Vu,s (x)] ,  I . t=x ,y , z ,  ( 2 6 )  

6 It is well known that additional information, especially on lattice artifacts are contained in non-planar 
Wilson loops. The authors found it not so easy to parallelize the whole evaluation package with sufficient 
flexibility, such that this additional information got lost. 
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where the potential Vu,s(x) is constructed out of the U~, on spatial plaquettes only. The 

symbol Pso~2) in (26) means normalization onto SU(2) matrices. For several data sets, 
the time-like gauge fields have been "improved" by the multihit method [26], using the 
uncooled time-like gauge fields. 

As an preliminary information on the potential (4), the T-dependent potential ap- 
proximants 

aV(R,T) = - l nWc(R ,T ) /Wc(R ,T -  1) (27) 

are useful. The typical relative accuracy of these quantities ranges from 5 x 10 - 4  at 
R = 8, T = 12 and t =  2.2 to 2.5 × 10 - 4  with the same space-time points at t =  2.8. 
There is still a noticable drop of the approximants for growing T, such that a numerical 

extrapolation to T ~ ~ is necessary. For this purpose, the cooled Wilson loops will be 
represented by a sum of exponentials, 

Wc(R, T) = ~ Ai(R)e -mi(R)T. (28) 
i=0,3 

The smallest mass, called m0(R), will be identified with the potential, including the 
renormalization factor ~:: 

aV( R) = (mo( R). (29) 

Fits with the ansatz (28) have been made in the range To ~> T/>  12 with To varying 
between 7 0 and 6. For a 3-mass fit, the potential V(R) shows a plateau for To = 1 . . . . .  3, 

within the statistical errors which were determined at To = 3. The value for m0 agrees 

with that obtained from a 4-mass fit with To = 0. For higher values of To, the fit becomes 

unstable and A3(R) may be zero. There is a slight trend for the potential determined 
from To = 1 to ly above those determined from higher T0-values, but this effect is in the 
relative order of 1 • 10 -3. For a 2-mass fit, there is a clear decrease of mo(R) starting 

from To = 1 to To = 4, where in most cases a plateau is reached which agrees with that 
of the 3-mass fit. 

The errors of V(R) have been determined by the jackknife method, using around 20 
bins. Since the number of cooling steps is different for the various data sets, the fits have 

been performed for the data sets individually. Since among most of those no significant 
discrepancy has been observed, the results for the potential have been averaged. Within 
the errors of  the extrapolation, no dependence of V(R) on the lattice size has been 
observed, except at t =  2.7 among the data sets #11 and #12, which is a 3 s.d. effect for 
all R. The set #12 has exceptionally small errors, and the most likely explanation is that 
there we observe a "freezing", i.e. the lattice has been caught in a twisted configuration. 
We have averaged the potentials and added half of the difference as a systematic error 
to the statistical ones. Although the resulting error is still very small ((,.9( 1 x 1 0 - 4 ) )  

for small R, it is evident that more work on finite lattice size effects is needed. 

7 Wilson loops with time extension 0 are simply = 1. 
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Fig. 2. Differences between potential and fits for fl = 2.7, 2.8 and 2.9, ~:2 = 3/2. 

4.2. Results 

The potentials obtained as described above have been fitted by the ansatz (22) .  This 

fit contains 3 parameters, and it is for 8 points in R. In Figs. 1, 2 and 3 we display 

the differences between the fit (22)  and the Monte Carlo data for several values of  fl 

and s c. In order to get a feeling for the quality of  the fit, one has to note that the lattice 

forces (18)  are around a2F(R) = 0.10 at R = 1, fl= 2.2, and a2F(R) = 0.060 at R = 1, 

fl= 2.9. The relative deviations from the fits are thus in the order of  10 - 3  o r  less. 
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It is evident from the figures that the fits are somewhat too good, implying that the 
errors are overestimated. This is reasonable since the correlations between adjacent R- 
values are not properly taken into account. Even when reducing the errors considerably, 
there is no trend of  a systematic deviation. In Table 3 we show, for each fl, the resulting 

fit parameters and x2/d .o . f .  The latter is somewhat too small, in accordance with the 
impression gained from the figures. 

Next we note that the second order coefficient in (18) ,  c2, comes out with a weakly 

decreasing trend for increasing fl, whereas a totally satisfactory solution to the interpo- 
lation problem would require c2 to be a constant for all values of  s c and ft. In order to 
express the drop of c2 in terms of  an effective coupling constant, we note that it is in the 
order of  0.16, and that ce(R) is smaller than 0.5 except for the last 2 R-values at /3= 2.2. 
We conclude that this trend amounts to a drift of  less than 8% in the perturbative force, 
the total variation being a factor 3. This may be accounted for by a slight departure 
from the two-loop evolution equation, which shows up also in the determination of the 
running coupling constant on physically small lattices [20].  We have checked that c2 

can be made constant by a smooth departure of  the/3-function from the two-loop scaling 
formula (12) by about 7% in the range 2.2 ~< fl ~< 2.9, in which the scale varies by 
a factor 10. Such a contribution from higher orders to the/3-function is certainly not 
alarming. The fact, that c2 is also slightly (-dependent implies that the small corrections 
to the/3-functions are non-universal. 

Returning to Table 3 and to ~:2 = 3/2,  we note that the drop of the ratio K,./A~ with 
increasing /3 is statistically perhaps only marginally significant, given the uncertainties 
in the subtraction of the perturbative term. The difference of this value between s c2 = 3 /2  
and s c2 = 2 /3  taken at their respective smallest/3-values, is less dependent on the details 
of  the subtraction, as the At-parameters  are quite similar in this case. Thus the difference 
is more than a 20 s.d. effect, which should be taken seriously. 
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Table 3 
Results for c2, for the reduced string tension Kr and for Kr/A~. The A~--parameters are from Eq. (30) 

663 

/3 set# s 'e2 c2 a2Kr At~ Kr/A 2 x2/d.o.f. 

2.2 1+2 3/2 0.473(6) 0.0062(1) 0.04008 3.85(7) 0.9 
2.3 4 0.438(15) 0.0031(2) 0.02937 3.62(20) 0.4 
2.4 6 0.423(11) 0.0016(1) 0.02151 3.53(27) 1.0 
2.5 7+8 0.399(11) 0.00084(5) 0.01573 3.4(2) 0.4 
2.6 9 0.356(14) 0.00057(7) 0.01150 4.3(5) 0.5 
2.7 11+12 0.331(14) 0.00038(11) 0.00841 5.4(1.5) 0.4 
2.8 13+14 0.336(4) 0.00012(5) 0.00614 5.1(1.8) 
2.9 15 0.314(20) 0.00007(12) 0.00448 1.3(9.0) 0.5 

3.3 16 2/3 0.358(6) 0.0029(1) 0.05444 0.98(5) 1.5 
3.4 17 0.340(12) 0.0014(2) 0.04425 0.73(7) 0.1 
3.8 18+19 0.263(7) 0.00010(5) 0.01924 0.27(14) 0.7 
5.0 20 0.174(14) 0.00000(8) 0.00150 0.0(30.) 0.4 

2.7 21 1.0 0.405(25) 0.0042(3) 0.04478 2.09(14) 1.0 
2.8 22 0.412(12) 0.0019( 1 ) 0.03474 1.56(12) 0.3 
2.85 23 0.393(14) 0.0012(1) 0.03059 1.31(30) 0.4 

In the previous analysis, the extraction of Kr is based on the R-dependence of the 

potential at fixed/3. A systematically and statistically independent method is to establish 
the existence of a non-perturbative term Kr from the/3-variation. This is possible due 
to the large/3-intervall covered by our data. For this purpose, the potential differences 
will be represented, at given R and s c, by the ansatz (see Eq. (17))  

V ( R  + a,/3) - V(R, /3)  = Vp(R + a )  - Vp(R) 

C r ~ , . a l ( R  ) a l ( R._R ._.f_ a.+ a ) ) 

1 
Z v i , R a ' ( R + a / 2 )  + KRexp (--yR/g~2). (30) 

+ R ( R +  1) 
i=2,4 

Here no corrections for R-dependent perturbative lattice artifacts to one-loop order have 
been made, and we therefore expect the coefficients v2m to be R-dependent. This is 
the case, and if we omit the tree-level artifacts in (30) and include a term with i = 

1, the variation of Vl,R nicely corresponds to the pattern of lattice artifacts. With all 
parameters free, the fit becomes unstable, but there are acceptable global fits with rather 
R-independent parameters vi,R = vi, i = 3,4, KR = K and YR = Y, where the higher order 

coefficients vim, i = 2, 3, 4 are of O(  1 ). As in [8] we find that y is larger that predicted 
from asymptotic scaling, pointing towards linear term which vanishes in the continuum 
limit. This effect is, however, not very pronounced a t  ~:2 = 3/2, in contrast to the case 
(2 = 2/3. This is in agrement with the trend shown in Table 3. The results for the 

reduced string tensions are now slightly R-dependent, but they are statistically perfectly 
consistent with those obtained by the fit at fixed /3. Especially, the large discrepancy 
b e t w e e n  ~:2 = 3/2 and ~:2 = 2/3 is fully reproduced for all R. Equally important is that, 
as in [8], a decent fit with enforcing K = 0 is only possible with oscillating higher order 
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coefficients vi,n, i = 2, 3 ,4  of  O(10) .  This we regard as a typical consequence of  an 

attempt to perform a power series expansion of  a function with a large non-analytic term. 

The violations of  scaling between different values of  s c can be made visible more 
directly. We note that the cases fl = 2.2, (2 = 3/2  and /3 = 3.4, (2 = 2/3  (data sets 

#1+#2  vs. #17) are closely related in the sense that the AF-parameters are similar (see 

Table 3, column 6). This similarity is based exclusively on the perturbative calculation of  

the (-dependent AF-parameter. Using the ansatz (18) to correct for the small difference 

of  the parameters, and of  (16) to correct for lattice artifacts, the potentials can be 

compared directly. They have exactly the same curvature at small distances, but a huge 

linear difference, as shown in Fig. 4 (upper points, empty circles). The same holds for 
the cases /3= 2.3, (2 = 3 /2  vs. /3= 2.85, (2 = 1 (sets #4 vs. #23) and fl= 3.4, (2= 

2/3  vs. /3= 2.7, (2= 1 (sets #17 vs. #21).  Since now the/3-values are larger and the 
difference in (2 is smaller, the discrepancy is smaller. 

In all three cases the perfect linearity of  the difference gives excellent support for the 
interpolation formula (22).  

It is less spectacular to compare cases where the forces agree in the "linear" region. 

This holds true for 13 = 2.2, (2 = 3/2  and /3 = 3.3, (2 = 2/3,  in spite of  the fact 

that the reduced string tensions are quite different (see Table 3, column 5). The forces 

agree nevertheless well for R > 3a, due to the different Ae-parameters. The latter 
circumstance, however, leads to a discrepancy in the force at R / a  = 1, 2 and 3, which 

is of  the order of  6% at R / a  = 1 and which decreases quickly with increasing R. We do 
not plot these discrepancies as they are barely visible in a graphical representation of  the 

force or of  the effective coupling constant, but they are statistically highly significant. 

The discrepancies are slightly larger than the complete corrections for the lattice artifacts, 
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which we believe to be well determined by the fits at large/3 (see next subsection). 

4.3. More on lattice artifacts 

The deviations of the perturbative lattice potential from the continuum form, beyond 

those on tree and one-loop level, have been determined by hand, demanding agreement 
between the fit and the Monte Carlo data at/3= 2.8, ~:2 = 3/2 and at/3-- 3.8, s ~2 = 2/3. 

This determination requires an assumption on the coefficient c2 (see Eq. (18) and Table 

3). This coefficient has been assumed to lie in the middle of a range which is determined 
in the following way. 

If  we choose a very low value of c2, the O(g  16)-lattice artifacts have to be increased 

strongly, in order to simulate a Coulomb-like curve. Thus they begin to exceed the 
one-loop artifacts given in Table 1. At the same time, one needs a relativily larger value 

of Kr in order to compensate for the decrease of the quasi-linear rise of the perturbative 

potential at large R/a. Thus one will obtain a large value of Kr/A2F, exceeding that 
obtained at small values of /3 ,  although there the trend is still towards a decrease of 

this ratio for increasing /3. Specifically, for c2 ~ 0.2 the lattice artifacts begin to look 
absolutely crazy, 

I f  we increase c2, the potential fit at /3= 2.8, s ~2 = 3/2 will increase too strongly at 
large R to allow for a positive linear term, without modifying again the lattice artifacts 

in an extreme way. Since we exclude a linearly falling non-perturbative piece on general 
grounds, this introduces a rather sharp upper limit of c2 ~< 0.5 at/3= 2.8. The analysis 
presented above is based on a value somewhere in the center of this window, namely 

c2 = 0.33. 
The crucial observation now is that if we repeat the analysis with values of c2 at the 

above limits, the discrepancy between Kr/A 2 at s ~2 = 3/2 and at s ¢2 = 2/3 does not 

change essentially. The difference between these values stays approximately constant, 
whereas the ratio is always larger than the value 2.5. 

It has to be asked what kind of modifications of the artifacts are necessary in order 
to bring the results for Kr/A~, as function of ~:2, to mutual agreement. In order to 

achieve this, we have to choose different Ay-parameters. For instance, increasing AF 
has a threefold effect: 
- it trivially increases the denominator of Kr/A2; 
- it lowers Kr by subtracting a larger perturbative piece; 

- it leads to a different/3-value to be compared with in the isotropic case. 
These effects combine in such a way that a ~:2-independent choice 

AF ~ 21.0 Alatt (31) 

is appropriate to get a match, with respect to Kr/A 2, between the cases ~:2 = 3/2 and 
(2 = 2/3. This would imply imply that the Av-parameter does not depend essentially 
on ~:, in contrast to the perturbative results. Of course, the modification of AF induces 
variations in the interpolation ansatz (18) which have to be balanced by a modification 
of the artifacts. It turns out that for ~:2= 3/2, the artifact for the force at R/a = 1 has to 
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be reduced by almost a factor 3, as compared to the case s¢2= 2/3, and it is much smaller 
than the tree-level contribution. Also the pattern of the R-dependence is completely at 

variance with the one-loop results shown in Table 1. We believe these inconsistencies 
to be strong enough to rule out such modifications of the AF-parameters. 

5 .  D i s c u s s i o n  a n d  c o n c l u s i o n s  

The analysis of the Monta Carlo data in the small R-region is based on the following 

two assumptions: 
- The static potential V(R) ,  for fixed R as a function of /3 ,  can be expanded as a 

well-converging series in the renormalized coupling constant plus a non-perturbative 

term which is of the form ( l ). 
- The non-perturbative term can be approximated, apart from an irrelevant constant, by 

a term linear in R. Its coefficient will be called the reduced string tension Kr. 
The rather accurate data are perfectly consistent with this assumptions, whereas an 

attempt to set Kr = 0 will lead to a blow-up of the higher order terms in the expansion 

of V(R) .  
From column 7 of Table 3 it is then apparent that Kr/A~ shows the following 

departures from perturbative scaling: 

- It drops for increasing /3, for all three cases (2 = 3/2, 1 and 2/3, i.e. asymptotic 

scaling does not hold. 
- It varies by more than a factor 2.5 between the cases (2 = 3/2 and ¢2 = 2/3, if data 

sets with coinciding AF-parameters are compared. 
The first observation, which is not new, could be accommodated for by using a scaling 

function AF (as function of the bare coupling constant g~2) which differs significantly 

from the two-loop formula (14). The scale may essentially be determined by the po- 
tential slope in the linear region, since superficially the influence of the slope is much 

stronger than that of the logarithm in the region of small R (at least if one allows for 
significant errors in the lattice artifacts). At ~2= 3/2, where the dependence of Kr/A2F 
on /3 is weak, this imposes no significant difficulty on the choice of the potential pa- 
rameters. At so2= 2/3 the situation is quite different, and a smooth ansatz for the scale 

parameter as a function of/3, e.g. of the form 

AF = const( 1 + ,~.//3)Alatt, (32) 

requires that the non-leading term is larger than the leading one in the present range 
of/3. It furthermore seems to be difficult to find a convincing parametrization of lattice 
artifacts. The possibility to vary the scale parameter has been carefully studied also 
in pure SU(3) gauge theory. As mentioned in Section 3.2, the AF-parameter can be 
determined from an effective coupling constant oteff((P)) (P  is the plaquette value), 
which in turn is derived from a comparison of the perturbative expansion of In (P) (in 
terms of teen((P))) with the Monte Carlo result [ 18,22]. It had been shown previously 
in [23] that the departures from asymptotic scaling can be strongly reduced by this 
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procedure. It should be noted, however, that they are not eliminated completely, and 
the differences in the scaling behaviour between string tension, p-mass and nucleon 
masses from Wilson and staggered fermions, which are not affected by a redefinition 
of the scale, are of the same order as the former quantity [23]. Furthermore, the 
distribution of the plaquette value P in the presently accessible region of fl extends to 
such low (negative) values that a universal significance to the average value is difficult to 
understand. Although it has to be admitted that the variation of the scale as a function 
of the bare coupling constant is a complicated issue, all available information points 
towards a strong decrease of the non-perturbative effects for increasing ti- 

The dependence of the ratio Kr/A 2 on ~: is of different quality and cannot easily 
be accommodated for. The discrepancies are apparent both in the R-behaviour at fixed 

fl and in the fl-behaviour at fixed R. In the first case, one can compare potentials at 
(almost) coinciding scales, which are taken from perturbation theory. One finds that 
the curvatures of the potential are completely identical after very small corrections for 
scale differences and after subtraction of the lattice artifacts. The latter are taken from 
perturbation theory up to a higher order term which is determined at very large ft. Its 
contribution to potential differences is at most 2%. In spite of the perfect match of the 
curvature, there is a large linear deviation between the potentials, with a clear trend in 
~:2: large ~:2 imply a large linear difference. It is also possible to compare potentials 
which agree in their almost linear rise at large R. They show a clear discrepancy in 
the force at small R, which is larger than 6% between R/a  = 1 and R/a=2, when the 
comparison is made between fl= 2.2 (~:2= 3/2) and fl= 3.3 (~:2= 2/3) .  One thus can 
state that for identical Coulomb-like forces the linear term may vary within a factor 3 
for different actions. 

In the second case we find that the potential differences at fixed R can be expanded 
into a power series in the running coupling constant only at the expense of large and 
oscillating higher order terms, and that a decent expansion requires the inclusion of a 
non-perturbative term of the form (1).  Its prefactor, as a function of R, is constant 
within a reasonable accuracy, i.e. its contribution to the potential is linear. It agrees 
closely with the slope found in the R-dependent fit, especially with respect to the large 
discrepancy between so2= 3/2 and ~2= 2/3. 

We have studied two ways to modify the interpolation formula for the potential, in 
order to obtain a ratio Kr/A2F independent of s ¢. One way was a variation of the second 
order coefficient, along with appropriate modifications of the lattice artifacts. There was 
no significant change of the discrepancy. The other way was a shift of the At-parameter 
away from the perturbative prediction by an amount necessary to enforce agreement. We 
found the necessary modifications to be absolutely inconstistent with the trend of the 
one-loop perturbative calculations. Since the linear term seems to vanish in the approach 
to the continuum limit, especially in the case (2= 2/3, it is likely that it is simply a 
lattice artifact. 

The consequence would be that lattice gauge theory does not support the bag pic- 
ture, and that perturbation theory at small distances is valid without corrections from 
strings, membrane surfaces, etc. The confining force would then arise by the necessary 
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modification of perturbation theory for the Wilson loops, which is dictated by positivity. 
As for the quantitative implications, we remark that, according to [6], in the isotropic 

case at/3= 2.85 the full string tensions turns out to be aZK = 0.00401 -t-0.0004, whereas 
the reduced string tension Kr is, according to Table 3, a2Kr = 0.0012 + 0.0001. If we 
assume that Kr/A2F vanishes in the continuum limit, the full string tension would be 
reduced by about 30% for /3  --* cx~. This is in qualitative agreement with the SU(3) 
case [23], where the extrapolation has been performed numerically. 

The consequences at finite distances depend on the physical scale. Following again 
the analysis of Ref. [6], the distance of 8 lattice units at 13= 2.85 corresponds to a 
physical distance of 0.23 fermi. At this distance, the contribution from the reduced 
string tenstion in the isotropic case amounts to 14% of the total force. This percentage 
has to be regarded as a lower limit to the uncertainty of lattice results in the present 

region of/3. 
It remains to understand why for instance an anisotropy with s c < 1 leads to such a 

strong suppression of the reduced string tension. It is clear that in this case plaquettes 
with ½trI-I/~p ui << 1, pointing in space-space directions, feel a suppression caused 
by the increased /3-value which is necessary to match the perturbative region to the 
isotropic case. Now, it is a long-standing hypothesis [27-29] that a linear term in the 
potential is connected with the condensation of monopoles, which can be defined as 
three-cubes with an odd number of plaquettes with negative trace. If we inhibit the 
"negative" plaquettes, we may well have killed the elementary monopoles, and this may 
be responsible both for the reduction of the linear term and for its steep decrease with 13. 
Why the "larger" monopoles do not survive, is an open question. 
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Appendix A. Perturbation theory on anisotropic lattices 

A. 1. The zeroth-order action 

At tree level, the expansion of the anisotropic action (3) in terms of the gauge fields 
follows the standard procedure. With the representation 

U# ( x ) = e ig°A~ ( x)r'/2, (A. 1 ) 
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we obtain for a plaquette containing a time-like and a space-like link in direction i 8, 

¢2 
s, = ~{OoAi(x) - OiAo(x)} 2 

x 

1 tr = -~  ~ ~" {¢2Ao(x)(¢2a02 + dEi)Ao(x) + ai(x)(¢28o2 + d?)ai(x) 
x 

+ (¢2aoAo(x) + aiAi(x))2}. (a.2) 

Adding a gauge fixing term under the trace, 

(aiAi(x) + ¢2aoAo(x))2, (A.3) 

to enforce the Feynman gauge, we arrive at the action (including now all plaquettes) 

SO=-~  ~ {¢2Ao(x) ¢2002 + ~ 0 ] Ao(x)} (A.4) 
x j=1,3 , ]  

-I-~"~jAi(x) (¢2a2 + ~--~_ a2) Ai(x).  
i=1,3 \ j=1,3 

In order to get a more symmetric action, we first perform a change of variables for the 
time-like links: 

UO( X) = e ig°Ag(x)r~/2 ~ U~}( x ) = e ig°A~°(x)z~/2~. (A.5) 

We remark that in expectation values, i.e. in ratios of functional integrals, the factor ¢ 
for the differential cancels out at tree level. The corrections at the one-loop level will 
be discussed in Appendix A.5. 

The action is then 

a ~_tr l~-'~ Ai(x)A,ai(x) + a~o(x)A,a~o(X) } , (A.6) 
So = - 2  x 2 ~,=1,3 

where the anisotropic lattice Laplacian is given by 

zl~, =¢202 + ~ 02. (A.7) 
j=1,3 

The gauge fixing term now reads 

1 p 2 Sgf = ~(~:~B~,A#) , ¢# = {¢, 1, 1,1}. (A.8) 

In the following we shall drop the prime symbol for A0 again. 

8 We call this a timelike plaquette 
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We next introduce the Fourier representation of the A,, on an anisotropic lattice of 
size V£ = (L × L3: 

1 ~n ik,,x-- Au(X) = ~-( e ,%,.n, (A.9) 

and obtain, for L ---, oc, 

+f~ // 2^2 ,---., ̂ 2'~ So = ~1 jdk°(27r) 4dki E Au(k)A~z(-k) Is ~ ko + ~ ki I . (a .10)  
--rr /z \ i=1,3 j /  

The bare propagator is diagonal in space-time directions (due to the Feynman gauge), 
and its momentum part is 

1 
(A.11) 

D((k) = ~:2~02 -+- Ei=l,3 k'~2" 

In order to gain insight into the C-dependence of e.g. logarithmic terms and to have 
approximate rotational invariance for numerical integrations, the transformation ko --+ 
k~/~, (6) in Section 1) is useful. It leads to the more isotropic propagator 

1 
D'((k') = ^2 '  (A.12) 

(2k;/(  2 .+. Ei=I,3 ki 

where D'¢(k') as function of k~ differs from the isotropic case only to Ok~ 4. Thus, apart 
from the extra factor ~-I  in (6),  one will get a different cut-off effect, i.e. a change in 
the A-parameter. 

To fix the transition from the isotropic to the anisotropic case, one has to find out 
how many plaquettes are involved in the formation of the operator, which contributes 
to the potential. We note that all contributing plaquettes must be time-like to this order, 
since they must contain factors A~ which can be contracted with corresponding A~ in 
the external Wilson loops 9. Then there is a factor s c2 for each plaquette, a factor 1 / (  for 
each A~, not only from the plaquettes but also from the external loop. Internal momenta 
integrations proceed according to 5. We now discuss the various contributions to the 
potential. 

A.2. Expansion of the Wilson loop 

The contributions of the Wilson loop expansion to the potential will encounter a factor 
s c-4 from the external Wilson loops, due to 4 external time-like vector potentials. The 
relevant integrals are thus 

Vwl(R) = at  ,-4 -~q2 Oe(q - k) De(k) cos 2 ~/ ,~o (A.13) 

k 

9 This is due to working in the Feyman gauge. 
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a = ggNCR/4. (A.14) 

The integration contour at the singular point k0 = 0 is in the lower half plane. Whereas 
the second and third terms are proportional to the tree-level potential, there is a logarith- 
mic contribution from the first one, which is, after the transformation (6),  proportional 
to ( -3 .  There is no further change in the logarithm, since it is obtained by any finite 
integration interval around k0 = 0, where D~(k') = DE(k) + Ok~) . 

A.3. The triple-gluon coupling 

The triple gluon contribution arises from two time-like plaquette terms with at least 
two time-like vector potentials, which will be contracted with two time-like vector 
potentials on the Wilson loop. From these items, all (-factors cancel. The contribution 
to the potential is then of the form 

fA.. Z ~g(R) = Rql DE(q) 7"ri(q) , (A.15) 
i=1,4 Iq0--0 q 

where the ~ri (q) are various (-dependent contributions to the gluon propagator. We have 

2~(-2 f f 6(k + k ' - q ) D , ( k ' ) ( 1 -  ¼ko 2) (A.16) 7 r l - -  
. J  , J  

k k' 

which is independent of q. The factor ( - 2  is due to the fact that four time-like gauge 
fields from the expansion of the plaquettes contribute here. Next we have 

7r2 = ,~ 6(k + k' - q)D~(k)D~(k') ( ( - 2 ( 4  - k0 ) - ¼~02)02 • (A.17) 

k k' 

The first term in the bracket gives a logarithmic contribution, yielding again a term pro- 
portional to ( -3  after the substitution (6). The next term has no logarithmic singularity: 

7r3 =-2A S f 6(k + k'- q)Df(k)D<(k')(-'(l - ¼ko 2) Z q~'k~'. (A.18) 

k k ~ /a.=l,3 

The last term, 

7"1" 4 = -~1~ ~ ( k  q- k t - q)D((k)D((kt)~o z 
k U 
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leads to a 1/(02)2-singularity which is cancelled against a collection of terms, namely 
against ¢rl, terms from the four-gluon coupling, from the Faddeev-Popov ghost and the 
measure contribution. The sum of these terms is, written in the form of (A.15), 

1 l 2 ~2 
77" c = - -  ~ T T  4 - -  2 h  J DE( k)ko . 

k 

(A.20) 

The difference between (A.19) and (A.20) is a term ~ (-31nq2/q2. 

A.4. The quadruple-gluon coupling 

This contribution arises from a higher order expansion of a single plaquette term, 
and several ~2-factors have to be considered: The one in front of the plaquette (only 
time-like plaquettes contribute in Feynman gauge), those coming from time-like gauge 
potentials and those in the internal propagators. The main task is to keep track of the 
number of time-like gauge fields. The complicated result is, written again similar to 

(A.15), 

A(-4 {02[A((1 + 6(2) - 2sc:2A0,E - A1,E/2] 
7"l'4g'a --  6 

+ 3 [ d i g -  6(2(2A~: - A0,E) ] } • (A.21) 

Here 

f 
A E = / DE(k)' (A.22) 

k f^2 
Aog = ko DE(k), (A.23) 

k 

A~.E = f k~ 2D~,(k). (A.24) 

k 

The second bracket is essential to cancel the 1/04 singularity. We finally note that the 
fourth order expansion of the classical field tensor gives a term proportional to 

2N2 - 302 [ U % , ~  + U2a0,~(k)] • (A.25) 
q'l'4g'b ~- g 

A.5. The Faddeev-Popov ghost and the measure 

For the calculation of the Faddeev-Popov determinant (see Ref. [ 31 ] ) one has to note 
that the gauge function according to (A.8) is ~-dependent, and for the transformation 
of the gauge fields under local gauge transformations one has to take into account that 
the gauge fields in the time direction are A6/~. There is a second-order term in the 
expansion of the logarithm in the formula for the determinant, 
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7rFp,a = - -2  8(k  + - q )D~(k )Df (k  )2k0 , (A.26) 

k k' 

which can be combined with the last term from the 3-gluon coupling (A.19). The 
remaining term is independent of q, 

7"/'FP,b = A~Z-2A0,~: (A.27) 

which will be combined with the measure contribution to be discussed in the next 
paragraph. 

For the measure, the correction for integrating over dAg, a = 1,2, 3 instead over dUo 

is found in the same way as in the isotropic case except that we have to take into 
account the substitution (A.5). This gives a factor s c-2, and the same factor arises from 
contraction with the fields from the Wilson loop. We thus will get again a q-independent 
integral, written as a contribution to the gluon propagator in (A.15) 

a(-4 
¢rm= 6 A~. (A.28) 

which can be combined with (A.27). 

Appendix B. Computational details 

The large lattices used in this investigation can only be handled on modern parallel 
computers with distributed memory. The efficient paraUelization of the simulation code 
is a problem of considerable interest. It has been solved by domain decomposition into 
four-dimensional cubes with boundary exchange by message passing for the update 
program. The Wilson loops were analyzed after a reshuffling of the lattice such that 
each processor owned complete planes. This avoids communication during the build-up 
of Wilson loops. To store a full configuration on one node is clearly not possible. 

The development of the parallel code took place on the cluster of 8 processors (IBM 
RISC System/6000 model 550) at ISAM, Heidelberg. The production started on this 
cluster, with more data taken on the IBM 9076 SP1 with 10 nodes at the IfH, Zeuthen, 
on the iPSC/860 and on the Paragon XP/S, both at the ZAM, KFA Forschungszentrum 
Jiilich. A sustained speed between 30 and 50 Mflops/node could be achieved on most 
machines, partly after coding some routines in assembler. For a pure overrelaxation step 
for one link on one node, the time needed was around 10/xsec, including communication. 
This number corresponds to 48 MFLOPS per node. The best performance has been 
reached on the IBM 9076 SP2 with 7.6/zsec per link and node. The performance losses 
due to communication were in the order of 25%, where the effective bandwidths, i.e. 
those measured including the necessary packing and unpacking to and from arrays, 
were between 4 and 7 MByte/sec. These figures represent only a small fraction of the 
ideal bandwidths, and they imply that the reordering of data on the nodes is a major 
bottleneck for communication. 
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A m o r e  c o m p l e t e  desc r ip t ion  o f  t un ing  s teps and  u l t ima te  p e r f o r m a n c e  can be  f o u n d  

in Refs .  [ 3 2 , 3 3 ] .  
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