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We present new 4 -  D Monte Carlo results characterizing the strength of the finite temperature phase transition 
for Higgs/W mass ratios 1.0 and 0.6, obtained on isotropic lattices mainly with N, = 16, Nt = 2. We discuss the 
distribution of an gauge invariant block spin order parameter, estimating the Higgs condensate ¢c at To. We use 
the Potvin/Rebbi method in order to find the interface tension a /7~.  We demonstrate how the multi-histogram 
method (giving free energy differences) can be used to avoid the limiting procedure 6~ --* 0. From pure-phase 
histograms at ~ ,  extrapolated with the help of this method, we estimate the latent heat Ac/7~. Actual time 
series at lower Higgs mass require blocking in order to determine the jump of the lattice observables. 

1. I N T R O D U C T I O N  

Here is no need to dwell on the phenomeno- 
logical importance to be able to calculate the 
physical quantities which characterize the elec- 
troweak phase transition (see K. Kajantie 's  re- 
view at this conference [1]). It  is mainly due 
to the possible generation of the baryon asym- 
metry  when our universe underwent this transi- 
tion. Studying its nature and strength on the lat- 
tice, albeit restricted to a purely bosonic, SU(2) 
gauge-Higgs model at unphysieally small Higgs 
mass, may serve to state its intrinsically non- 
perturbat ive features. While perturbat ion the- 
ory describes well the broken phase up to Tc (in 
particular ¢(T)) ,  it breaks down both at small 
¢ < <  Tc and in the symmetr ic  phase T > T¢. 
Before the symmetr ic  phase is qualitatively un- 
derstood, lattice Monte Carlo calculations are in- 
dispensable to quantify the strength of the tran- 
sition. 

We have studied the pure SU(2) gauge-Higgs 
model with the action 
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= a t  Z = S . 0  for  m .  < 
m w  (medium A = 0.00172[2,3] and small I = 
0.0005). The algorithm combined a 3 - D Gaus- 
sian heat bath  for U~,, and a 4 -  D Gaussian 
heat ba th  (improved for acceptance) for (b~ = 
p~:V, V E SU(2).  The autocorrelat ion was opti- 
mized by one heat bath  step followed by 8 re- 
flections fo} the Higgs and 1 reflection for the 
gauge field (see B. Bunk[4]). The lattice scale 
was determined at nc for medium ~ on a 244 
lattice, giving m H / m w  = 1.0(1) corresponding 
to m/4 = 49GeV and To~row = 1.74(5). For 
small I the most  precise calibration at Ice was 
obtained on an anisotropic (TG = 7H = 2) 
163 x 32 lattice, giving m H a , / m w a 8  = 0.62(2) 
and m i t a t / m w a t  = 0.60(1) corresponding to 
T ¢ / m w  = 1.13(1). Large statistics Quadrics Q16 
results were presented by the DESY group for 
mH = 49CeV and mH = 18CeV (~ = 0.0001) at 
this conference[5]. 

2. O R D E R  P A R A M E T E R  

In order to define a gauge invariant order pa- 
rameter  we employed the projective block spin 
constructibn[3]. Solving the eovariant Laplace 
eigenvalue problem 

2 ¢4 _Da[U]C~ a =  oC2 (2) 
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on various blocks a (including the lattice as sin- 
gle block, with Neumann boundary conditions), 
the eigenvector C~ corresponding to the lowest 

1 a+ a eigenvalue (normalized as ~ ~ e a  Tr(C~ C~) = 
lal, lal is the block volume) is used to define a 
block Higgs field 

i (3) 

-~ xEa 

The lowest eigenvalue is obtained by using the 
conjugate gradient method to minimize the Ritz 
functional. Convergence is found to be much 
slower (several hundreds of iterations) in the sym- 
metric than in the broken phase. The Higgs 
length ca = ~ )  is the scalar order param- 
eter. 

I t  is instructive to compare the order param- 
eter distributions for the whole lattice 16 a x Nt 
and for subblocks, at Nt = 4 and 2. On lattices 
of tha t  size a two-state signal can be easily seen 
on the whole lattice (see Fig. 1), but it becomes 
generically weaker for 8 3 x Nt subblocks as well as 
for N, = 2 instead of 4. In no case it was possible 
to apply the equal-area criterion to determine nc 
(which is instead defined by the link susceptibil- 
ity). The  distribution for the symmetric phase is 
known from simulations well below ~ ,  to shrink 
and move towards ¢ = 0 with larger block size. 
For the broken phase well above ~c the distribu- 
tion becomes narrower with block size but moves 
only with rising n. The same is true for the two- 
s tate  histograms near to ~ .  

From the max imum of the peak describing the 
broken phase in phase equilibrium we estimate 
¢¢/T¢ = 2x/~7~¢m~N t. We find 1.0 at medium 
and 1.15 at small I .  A detailed study of the dis- 
t r ibution near ¢ = 0 (and its scaling properties 
with N , / (  for lattice size comparable to correla- 
tion length) would require multicanonie updating 
i.e. the knowledge of C~ in every Higgs update. 

3. I N T E R F A C E  T E N S I O N  

For the small A case we have examined the 
method of Potvin and Rebbi[6] to determine the 
surface tension in a relatively small system. Two 
lattices A of size 162 × 32 × 2 are kept at nl and n2 
and put  into contact along the xyt hyperplanes. 
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Figure 1. Order p a r a m e t e r  distribution for whole 
lattice 163 x 2 at ~ = 0.12887 and small ~ (30000 
measurements, autoeorrelation 9.3) 

Due to periodic boundary  conditions there should 
be eventually two interfaces. Runs with many  
pairs (nl ,  n2) of couplings (grid size 6n = 10 -~) 
have been performed around n~ = 0.12887 (with a 
number  of measurements  1000 to 4000 per point). 
Da ta  could then be grouped into "hea t  baths" 
according to paths in the ~q - n2-plane and pro- 
cessed by the mul t ih is togram technique to give 
smooth  interpolations, for example  the average 
action per link 

1 1 

IE1 

refering to the subsystem 1 in the heat  ba th  n2 
as function of nl- According to Ref.[6] the main 
contribution to the interface tension should be 
given by the integral 

a / T  a 2N~N a E '  ' ( ,~,,,~ - )d~, = (5) 
1 

in our case over the mul t ih i s togram interpolated 
curves. The delicate task, however, is to perform 
the limit ~ - ~x,n2 - n~ --+ 0, but  keeping 

< < < (6)  

away from the critical ~ 's  of the subsystems in 
the presence of a heat ba th  at another  K. This 
condition could be fulfilled only for unsymmetr ic  
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 -spacing, -  ,1/1 2 - = 2, which takes 
the unsymmetr ic  character of the phase transition 
into account (i.e. link susceptibility much higher 
in the broken phase). Actually our lattice was too 
small to allow for a reasonable limit not consistent 
with ~ = 0, even for unsymmetric  (~1, ~2) with 
respect to ~c- 

Uncontrolled contributions to the actual a as a 
free energy difference are hidden in the paths ap- 
proaching gl = g~ = g~ along the homogeneous- 
phase and the mixed-phase paths, respectively. 
The mul t ih is togram technique can implicitely 
evaluate integrals along arbitrary curves in cou- 
pling space by est imat ing free energy differ- 
ences[7]. We have employed this idea along 
the piecewise s traight  paths (g~, a~) - (gl,  hi) - 
(t~2, K1) -- (gc -J¢- •, Kc -t- e). For the preferable un-  
symmetr ic  case (t¢1 = 0.12881, ~c2 = 0.12890) this 
procedure gives an upper estimate 

N, 2 
o~/T? = ~ ( ~ - )  = 4 . 4 x  10 -a  (7) 

(which is twice as large as for the symmetric case 
(tq = 0.12883, g2 = 0.12891)). This result refers 
to a mixed-phase point at (0.12888,0.12885). It 
should be ment ioned that  the Monte Carlo con- 
figurations along the mixed-phase part of the in- 
tegration contour must  be monitored to make 
sure that  both  subsystems are in the appropriate 
phases. At medium ), huge lattices are necessary. 

4. L A T E N T  H E A T  

The part  of da ta  for nt = n2 has been analysed 
to give an es t imate  of the latent heat as well. We 
have looked for the discontinuity of the interac- 
tion strength 5 = 5 - P "  Due to the continuity of 
pressure p the j u m p  of this quatity gives access 
to the latent heat  per unit volume A( [8], 

N4.0~ 

0 r  A(( ;2  - 1) 2) - 6A(P))  (8) 

with P - T r U p l 2  and r = - l o g ( a M ) .  Using the 
one-loop RG equations for the derivatives of bare 
couplings along lines of constant physics [8] and 

0K 1 Oac 
o ;  - N ,  0 ( l / N ) '  (9) 

which is 0.008(2) at medium A[2] and 0.0011(2) 
at small A[8]. We have used both theoretical his- 
tograms at ~c = 0.12887 at small A. obta ined 
by multihistogram extrapolat ion from pure phase 
data away from t% and actual da ta  f rom the 
Monte Carlo at t% for the discontinuities in eq. 
(8). 

For this purpose, the actual data  need blocking 
over 5..15 subsequent configurations. But  then 
remains a systematic difference between the cor- 
responding estimates for the latent heat  at this 
A: A ~ / T  4 = 0.103(10) for the ext rapola ted  his- 
tograms, Ae/T~ 4 = 0.087(8) for the blocked actual  
data at go. 

5. C O N C L U S I O N S  

We have investigated two values of the Higgs 
mass mH ~_ m w  on modest  lattices. 

Compared with the results of the DESY group 
our results show that  lattices of correlation length 
size can characterize the strength of the transi t ion 
in the right ballpark of parameters.  
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