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The temperature dependence of the topological susceptibility around and above the deconfining phase transition 
is studied both by cooling and the field theoretic method. The susceptibility has a peak at T ~_ 0.83T¢ and drops 
steeply at To. In the cooled configurations a characteristic anisotropy of the correlation function of topological 
charge is detected in the range T ~ (1..2)Tc. 

1. I N T R O D U C T I O N  

Instantons are probably the most  prominent 
gauge field degrees of freedom for a working de- 
scription of the low-lying hadrons [1,2], but can- 
not contribute to a confining quark-antiquark po- 
tential. Therefore their only phenomenological 
purpose within pure Yang-Mills theory seems to 
provide the solution of the UA(1) problem, giving 
a mass to the 77' in accordance to the Witten-  
Veneziano [3,4] argument .  The loss of confine- 
ment  of quenched QCD is probably caused by the 
disappearance of other gauge field structures. If  
the density of instantons changes rapidly at Te, 
this would be merely another indicator of the de- 
confining phase transition. 

In contrast to this, instantons in non-quenched 
QCD seem to play a more active role in the chi- 
ral symmet ry  restoring phase transition [5]. This 
mechanism is related to their quark-induced in- 
teractions. Whether  purely gluonic interactions 
in pure gauge theory also lead to nontrivial topo- 
logical density correlations has not been checked 
on the lattice so far. The quenched QCD vacuum 
at T = 0 is reported [6] to be describable as an 
uncorrelated instanton ensemble, but this cannot 
be true at higher temperature[7]. 

The instanton density and topological suscep- 
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tibility is theoretically described by Debye-type 
thermal screening in a free quark-gluon gas [8] 
only at very high temperature.  This picture holds 
only at T > 3To and is completely unjustified in 
the confinement phase [7]. For purposes ofhadron  
phenomenology an unambiguous lattice measure- 
ment of the topological susceptibility vs. temper-  
ature would be highly desirable. For SU(2) pure 
gauge theory this has been studied in Ref.[9] but, 
due to a discrepancy between the cooling and the 
field theoretic [10] methods above deconfinement, 
there was no final conclusion. One of our objec- 
tives was to redo this analysis for SU(3). 

2. M O N T E  C A R L O  A N D  C O O L I N G  

During the last months,  the Bielefeld group has 
run a high statistics project of pure SU(3) ther- 
modynamics  [11] on the Quadrics Q16 (sponsored 
by the DFG). Temperatures  T = (0.8...3.8)T~ 
were investigated on a lattice of size 323 x 6. For 
a subset of 13-values we had the opportuni ty  to 
analyse every 50-th configuration. Typically, we 
could use 400 configurations for each fl in this 
pilot study, which was a preparat ion for the non- 
quenched case. Due to the I /O  bottleneck of the 
present Quadrics machines it was not possible to 
store the configurations for an off-line analysis. 
On-line it would not have been possible to use ge- 
ometric or integral methods to measure the topo- 
logical charge within an acceptable time. There- 
fore we used the naive topological charge density 
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on the lattice[13] (Hu~(z) denotes a plaquette) 

± 4  
qL(z ) _ 1 

2,32r2 ~ eu,opTr(I I , , ( z )Hop(z  ). (1) 
4-1 

The naive charge has been measured for the 
Monte Carlo configurations. After that  these 
were subject to the following cooling schedule: 
20 steps of slow cooling (with maximM step size 
6 -- 0.05 in all three SU(2) subgroups), followed 
by 50 fast cooling steps (without step size con- 
trol) in order to find out whether the correspond- 
ing topological charge (and susceptibility) stays 
constant. During the slow cooling the correlation 
function of topological density has been measured 
for spacial and temporal  distances. 

3. D A T A  A N A L Y S I S  

3.1. T o p o l o g i c a l  s u s c e p t i b i l i t y :  coo l ing  
After 20 steps of slow cooling the naive topo- 

logical charge ~ qL(~) clusters around multiples 
of some Q0(fl) < 1. This unit of charge takes 
care of the roughnesss of the charge distribution 
(which depends on fl !). Although the configura- 
tions are neither selfdual or antiselfdual, they can 
be selected in topological sectors. Using Q0(fl) we 
build charge multiplicity distributions for all cool- 
ing steps t, N(Q,  t, fl), by binning around integer 
Q's, from which cooling histories of the topolog- 
ical susceptibility xLor(t) = (V2) ( t ) /Y  are con- 
structed for each temperature.  The histories look 
very different above and below To. Within 15...20 
slow cooling steps a plateau is approached from 
below in the confinement phase and just at the 
transition at fl = 5.9 (T/T~ = 1.01). It extends 
throughout the following fast cooling regime. For 
T >_ 1.6T¢ (fl > 6.2) the susceptibility drops to 
the plateau within the first 5...10 slow cooling 
steps and stays also constant during the following 
fast cooling. 

In general, we can determine the cooling value 
L¢ through xLor(t = 20) for definiteness. In Xtop 

- b c  I r l n 4  Fig.1 we show x to r / l c  as function of T/T~. The 
cooling history for /3 --= 6.0 (T/T¢ = 1.2), how- 
ever, poses the ambiguity shown in Fig.1. At this 
temperature XLtop(t) does not have a plateau. Af- 
ter a steep minimum it goes through a narrow 
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Figure 1. Topological susceptibility around Tc 

maximum around t ~ 12 (both shown in the fig- 
ure) before it decays to the lower value over all 
the fast cooling steps. The value at T = 0 is 
taken from Ref.[12], and is based on the field the- 
oretic method. Notice the peak of the topological 
susceptibility preceding the deconfinement tran- 
sition. 

3.2. T o p o l o g i c a l  s u s c e p t l b i l l t y :  f ie ld  t h e o -  
r e t i c  m e t h o d  

We want to compare this temperature depen- 
dence with the results of the field theoretical 
analysis. In principle we do not need to use 
cooled data  together with a n  Z ( f J e f f ( t ) ) .  This 
possibility had been proposed in Ref.[10] in or- 
der to use more data  and to have control over 
the renormalization of charge. The lattice topo- 
logical density is related to the continuum one 
through a Z-factor, qL(z) = a4Z(•)q(z) + O(a 8) 
with Z(fl) = 1 + z l / f l  + z2/fl  2 + . . . ,  while the 
susceptibility contains perturbative mixing terms 

X~ov(fl) = Z(fl)2Xeop + A(fl)(T) + P(f l ) /a  4 (2) 

with the energy momentum tensor (known to neg- 
ligible) and the unit operator (which has to be 
subtracted). The polynomials Z(fl) and l(/~) 
are perturbatively known up to the leading co- 
efficients (Zl = -5.4508 and ha), P(fl) = c3/fl a + 
c4 /~4+. . ,  up to the second one (ca = 3.575 10 -a, 
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c4 = 8.423 10 -4) (all numbers correspond to 
the 323 x 6 lattice). The next coefficient cs = 
(2. + 0.75)10 -2 has been obtained from a fit to 
supplementary data  taken by us at fl = 8 ,  9 ,  10. 
and 11., where the topological susceptibility can 
be safely neglected. Finally, z2 = 4.3 + 0.6 has 
been determined from a fit of XtLop at our low- 
est fl = 5.75 (also taken after the Bielefeld mea- 
surements) and 5.80, where Xt~p is considered to 
coincide with L¢ Xtop" 

The comparison is also shown in Fig.1 (with 
only statistical errors in the field theoretic val- 
ues). Within much larger errors, the results of 
the field theoretic analysis are compatible with 
the cooling results over the range (0.75...1.6)Tc, 
where the susceptibility drops, but  not at higher 
temperature.  In this respect the result is clearer 
than in the SU(2) case[9]. 
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Figure 2. Anisotropy of the moments of X(z, O) 

3.3. T o p o l o g i c a l  d e n s i t y  c o r r e l a t i o n s  
The correlation function is dominated by a 

strong positive core at distances of 0 and 1 lat- 
tice spacings. This reflects the spatial size of the 
instantons themselves. Interesting is a small neg- 
ative tail which becomes visible in the temporal  
direction above Tc in an intermediate stage of 
cooling (around the 5-th slow cooling step). In 
contrast, for T < Tc both correlation functions 
behave similarly under the first cooling steps and 
no negative tail develops. 

Lateron the topological charge distribution is 
washed out by cooling, such that  the timelike cor- 
relation function becomes more flat and exceeds 
the spacelike one. In Fig.2 we show how the sec- 
ond moments of the on-axis correlation for space- 
like and timelike distances change differently in 
the process of cooling, both below and above de- 
confinement. 

4. C O N C L U S I O N S  

The results of the cooling method on the tem- 
perature dependence of the topological suscep- 
tibility around the deconfinement transition are 
corroborated by the field theoretic method over 
the range (0.75..1.6)Tc. There exists a space-time 
asymmetry of the topological correlation func- 
tion, which becomes visible after a few cooling 
steps for temperatures above To. 

The authors are grateful to E. Laermann, M. 
Luetgemeier and C. Legeland for their assistance 
in various stages of this investigation. 
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