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Abstract. Some specific conditionally exactly solvable potentials are discussed within the
path integral formalism. They generalize the usually known potentials by the incorporation of
fractional power behaviour and strongly anharmonic terms. We find four different kinds of such
potential: the first is related to the Coulomb potential, the second is an anbarmonic confinement
potential, and the third and fourth are related to the Manning-Rosen potential,

1. Introduction

In recent years there has been enormous success in solving path integrals exactly. Milestones
in the development have been the path integral solutions by Feynman of the harmonic
oscillator [1,2], the path integral solution of the radial harmonic oscillator [3—6], and the
path integral solution of the Pdschl-Teller and modified Pgschl-Teller potentials [7-9],
respectively, All these kinds of problem have in common that they correspond to either
a Gaussian, Besselian or Legendrian path integration. The couplings and parameters of
the potentials are always assumed to take on arbitrary real values. An extensive list of
all potential problems along with other path integral solutions, say in homogeneous spaces
[10], will appear soon in a ‘Table of Feynman Path Integrals’ [11]; a classification scheme
has already been announced in [12, 13]. It is remarkable that almost all of these solutions
can be understood in terms of a group path integration, be it a group path integration on
the entire group space, or where an extension with the introduction of additional dummy
variables is necessary [9, 14].

However, there are a couple of problems which generalize the well known problems
which are not entirely soluble by their own accord in the sense that all possible parameters
can be freely chosen. These considerations can be made, of course, within the Schrédinger
equation approach or within the path integral formalism. In the following I will only be
concerned with the path integral approach. One set of such problems is called ‘quasi-exactly
solvable’ [15]. This means that a certain constraint on the parameters must be imposed,
and then only a few low-lying energy levels together with the wavefunctions can be stated.
Another set of problems is called ‘conditionally exactly solvable’ [16-19]. They modify
the usual potentials in quantum mechanics in a specific way such that they are quantum
mechanically exactly solvable; however, the parameters and the coupling of the potentials
are not completely free to choose.

In this article I discuss four different potentials of the Iatter kind. The first potential
generalizes and modifies the Coulomb potential. A 1/./r term is incorporated and adds
significant long-range behaviour to the usval Coulomb interaction, As it turns out a
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specific form of the centrifugal barrier must be chosen (actually attractive) in order that
the carresponding path integral can be solved. As has been pointed out by Stillinger [20]
this particular set-up can produce a wide barrier around an attractive origin. By manipulating
the parameters the ground-state energy can be raised and lowered, and can also be moved
to zero-energy; hence a potential with a bound-state character and a resonance character
can be studied at the same time. Artificial as this looks, there exists an electrostatic charge
density which actually produces such a potential field. A point charge located at the origin
is accompanied by strong 1/r* and 1/r3/% behaviour [20].

The second potential is a confinement potential with a dominant »%* behaviour for
r — oo. Again a specific form of the radial potential (attractive) is required in order that
the path integral can be solved. The potential is therefore an anharmonic radial oscillator. It
has played a role in the modelling of quark—antiquark forces for mesons in nuclear physics
[213.

As it turns out, both potentials are rather complicated concerning the proper formulation
of the quantization condition. In each case it is necessary to solve a transcendental equation
involving a parabolic cylinder function. This very point has been ignored in [16, 19], where
a naive solution was claimed. The authors did not take into account that the radial problem
remains a radial problem even after the transformations, and the deceiving regularity of the
transformed problem (a shifted harmonic oscillator) does not allow a coordinate continuation
to the entire R (I sketch the naive solution, though). As we will see, it is not possible to
state the propagator exactly. However, the corresponding energy-dependent Green function
can be stated in closed form. The proper quantization conditions follow from the poles of
the Green fanctions.

The third and fourth potentials are modifications of a Eckart potential [22] or a Rosen—
Morse oscillator [23] and model potential troughs. These kinds of potential play a role in
the theory of molecules {22,23], solitons and reflectionless potentials [24], In the first of the
two potentials the proper transformed potential is of the Manning—Rosen type [25], which
was also used as a screened Coulomb potential [26,27] with exponential decay (s-wave
Yukawa potential). The second leads to a hyperbolic Scarf-like potential [28, 29] with an
even stronger screening of the potential energy. The connection to supersymmetric quantum
mechanics with all these potentials has been pointed out by Dutt ef af [18], Nag et af [19)
and Papp [30].

Although exactly solvable, these potentials are complicated enough to be of serious
consideration in modelling actual physical forces. By choosing a path integral approach
we succeed in gaining comprehensive information about the bound-state solutions of these
potentials (if they exist), and what is often more important, in the scattering states which
eventually allow for the calculation of cross sections and phase shifts which will be taken
into consideration elsewhere.

This article is organized as follows. In the following part 1 sketch some necessary
information concerning transformation techniques in the path integral. In the third section I
present the four ‘conditionally exactly solvable’ potentials labelled V), V4, V3 and Vy. The
well-established spacetime transformation technique reduces each path integral problem
to an aiready known one. The final result in each case includes the statement of the
corresponding Green function. For the first two potentials, where the bound-state solutions
are only implicitly known through a transcendental equation, this is sufficient. In the other
two the bound-state wavefunctions, the energy spectrum, and the continuous states are
displayed explicitly. The last section contains 2 summary and a short discussion.
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2. Spacetime transformation technique

In order to make the article self-contained, let us cite shortly the spacetime transformation
technique, ¢.g., [5, 11-13,31-39], and references therein. We consider a path integral

I(!”):Xﬂ

. ‘U
K" x';T) = f Dx(t)exp l% f l:%xz - V(x)} dt] (N
x{t)=x" !
where it is assumed that the potential V{x) is so complicated that a direct path integral
evaluation is not possible. Now a transformation x = F(g,t) and the so-called ‘time
transformation’ is implemented by introducing a new ‘pseudo-time’ s”. In order to do this,
one first makes use of the operator identity
1 1 ‘

H_F = f’(x’t)f;(x,:)(H - E)f,(x,t)ﬁ(x’r) (2)
where H is the Hamiltonian corresponding to the path integral K(7), and f ,(x,¢) are
functions in x and ¢, multiplying from the left or from the right, respectively, onto the
operator (H — E). Secondly, the introduced pseudo-time s” is assumed to obey the constraint

it

k)
f dsfi(F(g(s). s)) [1{F(g(s),sN =T ="+ 3
0
and has, for all admissible paths, a unique solution s” > O given by
rfl xll
SH:[ L=f __._Z__CIS_ @)
p fiGx DD S FP(g(s), )

Here one has made the choice fi(F(g(s), s)}) = f(F(g(s), 5)) = F'(g(s), 5) in order that in
the final result the metric coefficient in the kinetic energy term is equal to one. A convenjent
way to derive the corresponding transformation formulae uses the energy-dependent Green
function G(E) of the kernel K (T) defined by

"o, _ " I o l ,oo i(E+ie)T /R "ot

6a"a By ={¢'| mp—rle) =1 [ ardsornxr gim) ®
where a small positive imaginary part (¢ > 0) has been added to the energy E. (Usunally
we do not explicitly write the i€, but will tacitly assume that the various expressions are
regularized according to this rule.) For the path integral K(T) one obtains the following
transformation formulae (F(g, ) = F(g) time-independent case only)

K( nooLt, _ *® dE —iET /R "ot E 6
x}x,T)— Ee G(q ,4- ) ()
-0
: [}
G(q”, q.'; E) = %[Fr(qff)Ff(qr)]1/2£ ds”K(q”, qr; sn) (7—)

with the transformed path integral K given by

g(s")=g" "

K@" q's" = f Dyq(s) exp [%f [%éz — F* @)V (F(g) - E) - AV(q)] dS}
q@)=y' °
@
and the quantum potential AV has the form
PIZ Frr2 Fr
AV(g) = —[312— _2—}
(q) o ( F ) ©)

These formulae are sufficient for our purposes.
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3. The potentials

3.1. The modified Coulomb poiential

The first potential we are going to study has the fellowing form (r > 0):
By Z¢8 b
V)= —% -2

l(r) m rz r + \/F (10)
Zg* is a Coulomb coupling, & € R, and y is a constant which will be determined. Obviously,
this potential is a generalization of a pure Coulomb potential. The centrifugal term usually
makes no difficulty, but the »~'/? long-range term significantly alters the behaviour of
the potential for r — co. 1 proceed in the canonical manner and perform a coordinate
transformation r = #%, # = 2ui together with a time ransformation At; = 4uju;_)As; in

each short-time interval Ay; to the new time s(7) = j;f ds/u?(s). 1 obtain

r®y=r"
: " a2 y Za2 b
Vet e Ty = Drit lf Mpa (R Y 29 %
KV (r fr!T) f r()cxp{h ; 2!‘ 2m r2 , +;\/; dt
r{t)=r
=2(r f ff)1/4f dE —:ETjhf ds.rfecth 5
2rh
”“")—"” 12 16y +3
X ’Du(s)cxp[ [ [ (2m :_: — 4Ey? +4bu):f ds].
ul{0y=u"

(D
This path integral as it stands is not solvable, However, if we set y = 16, the centrifugal
term vanishes due to AV = 352 /8mu2, and we seem to have a shifted harmonic oscillator
path integral. Let us for the moment continue with the naive analysis according to [16, 19,
where u € R is assumed. Performing the additionai variable shift v = u — b/2F we get

oo
KOO ps Ty = 207 7 f Eﬂe-isr/ﬁ [ ds'els"42g* 8 EV/i
0

R 2nh
L'(.T")"‘—‘"D” . o
x f Du(s) exp ['—"3 f (? — o) ds] (12)
2h fo
v{0)=v"
where @w? = —8E /m. Provided v € R, the last expression can now be analysed in various

ways, In order to obtain the discrete spectrum one can insert the explicit form of the
propagator of the harmonic oscillator and can expand it by means of the Mehler formula to
obtain the wavefunctions and the energy spectrum of the bound states of the path integral
(11); second, one can insert the explicit form of the propagator and use a dispersion relation
to obtain the wavefunctions of the continnous spectrum. The third possibility is to insert
the Green function of the harmonic oscillator: by analysing its analytic pole structure it
follows that the Green function of the harmonic oscillator must be evaluated at the energy
E — 4Zg* — b*/E, ie. by performing the s"-integration we obtain the Green function of
the path integral (12)

GO, By = [ r(—u)Du(\/ e v>)n\,( - e v<). 13

Here v = —% +(4Zq? —b*/E)/hw, and D,(z) is a parabolic cylinder function [40, p 1064].
The poles of G(E) vield the bound-state energy spectrum and wavefunctions and the cut
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the continuous spectrum. The poles are determined by the poles of the I'-function and we
obtain the ‘quantization condition’

42" — VP /En =2(n + )V —2E,/m  neN. (14)
With some algebraic manipulations this can be cast into a cubic equation in terms of E,
yielding

(n+ 3YR2ES + 2mZ?q*EL — Zg?b*mE, +mb*/8 = 0. (15)
From the generally three solutions of this equation, the physically relevant one is selected
by requiring that for & = 0 a Coulombic spectrum should emerge. Hence we get

R
EB=Q/JB_§-§/JB+§_§ 16)
PN} 70OV 35 - R? 2R® RS
D={(= = P= == 247 1
(3)+(2) 3 e=27-3 " an
_ 2mZ%*  mZg*h® _ mp (18)
R+ L2 RS 8n(n + 1Y
The bound-state wavefunctions then have the form

mo, 1 \'7?
¥0) = Ne, ( nr:’m:)

2 b n b\
XH”[ = (‘/F"ZE,,)]“"[_M; ( r"zEn)] )

2/ Ey° v
" ((" + PI3(En + R/3) — R2/3+ 51) ' (20)

H,(x) are Hermite polynomials [40, p 1033]. Up to the additional proper normalization
factor Ng, this is the result of [16, 19}, Let us note that for the case Z = (b we can repeat
the analysis and obtain a discrete energy spectrum according to
o3 __mbt
E,= o+ %)2. 21)
This energy spectrum is of genuine non-Coulombic behaviour.

However, this easy-to-obtain solution cannot be considered as correct! As pointed out
in [20] a wavefunction with r'/* behaviour at the origin of a singular potential is physically
unacceptable [41). Therefore we must discard the above solution of [16, 19] entirely. In
{12) we have made the implicit assumption that it is possible to extend the variable v to the
entire R. This is in contrast to the one-dimensional Kustaanheimo—Stiefel transformation
which maps B — Rt [42,43]. In the usual radial Coulomb problem this is an obvious
mapping because the radial Coulomb problem in the variable r is mapped onto a radial
harmonic oscillator in the variable u. Therefore the path integral (11) is a radial path
integral with u > 0, and the path integral (12) is a radial path integral with v > —b/2F for
fixed energy E. The additional linear term spoils the symmetry with respect to reflections
in the variable u. In [44,45] I have developed a procedure to deal with such problems
within the path integral. We assume that we have evaluated a path integral problem with a
potential V (x) in, say, the entire R. This path integral is called K (). The corresponding
Green function is denoted by G?(E). Now we consider the path integral problem with
the same potential V, but with Dirichlet {D) boundary conditions at the location x = a and
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we consider the half-space x > a. Then the Green function in the half-space x > 4 is given
by [44, 45]
x(M)=x"

i o« = D l ¢ m
- f dTelET /R f DY) xt)exp = f i —v)|d
h 1] h ty 2

x({ty=x'
¢M(x", a; EYGY(a, x'; E)
GVMa,a; E)
We identify the Green function G?(E) with (13) and obtain consequently

GW¢", s Ey = 2(7rY 4\/%1"(—1!)
{ %e(w_%)}pu[_ zm—h“i(ﬁ-%)]
o (%) /(2]

This determines the energy spectrum by the zeros of the parabolic cylinder function, i.e.

2mew, b
Dy, (— ?z E) =10. (24)

This result is in accordance with [20]. I have indicated by v, = v(E,)} and @, = w(E,)
the explicit dependence on £,. The analysis in [45] showed that the poles coming from the
prefactor in (23) play no role in the corresponding boundary condition problem. The case
b = 0 is contained in (23) by noting that for & = 0 the path integral (11) is a radial path
integral in & with angular momentum [ = 0 [5].

— G(V) (xﬂ" xr; E) — (22)

3.2, A radial confinement potential

The second potential we want to consider has the form (r > 0)

2
M 3 953 B R: oy

Va(r) = Ew ret? 4 2B T o (25)

This potential models a confinement potential for quark-antiquark interactions [21]; however
it is not quite oscillator-like, and has a singularity at the origin. We perform a spacetime
transformation as before with r = ¢*2. In doing that we set ¥ = —=: in order to cancel
the corresponding term in the emerging quantum potential AV = 58%2/32mu? due to the
transformation. Hence we obtain

r{")=r"

. I 2
(Ve . P ma (m 20y B RS
K@ ri = f IDr(l‘)e:xp[ﬁf'r [21’ (zwr t o T 5 5 dt

rig=r'

(26)
3 1/5[ dE izt f°° " —9iBs" 14
==('r —_ ds"e 9B/
2( ) R27rh 0
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u(sl'F):uN .,
i f* 9 9m
X f ’Du(s)exp[%f (’;u + Eu—ZEw u )ds} 1))
u(M=u' 0
_3 !ul/é[d_E—iET/hf " |:i,9( E? B )]
=20 [ ot 8P 5 i\ e B
v(s"y=v"
x f ’Dv(s)exp[ f (0? — &%v?) d.s'] (28)
v{0)=v"

In the last step we have set @ = 3w/2 and v = u — E/mw?. Inserting the Green function
for the harmonic oscillator gives the Green function for the path integral in the variable v

(v e R):
0ot 3m [3me [3me
G v E)= S r'(—v)D, ( Tv,) D, (— n v<) (29)

with v = —1 —3(E?/2me®— B) /hew. Provided v € R, the poles of the Green function would

determine the energy spectrum given by E, = \/ 2mew?[2(n + %)hw/3 + Bl forn € Ny

(@?* > 0, B > —hw/3) [19]. But for the same reasons as in section 3.1 this ‘solution’ must
be discarded.

In order to obtain the proper solution in the half-space v > —E /mw? for fixed energy
E, i.e. for the potential Vs, we proceed similarly as for the previous case and obtain

3m
2k

X[Dul: Smw i):' |: 3mw(,_/3_i)jl
R mo? f< mw?
:'}m_w JZIB_L ?’mw f12/3 _E.._.
o[ (- 55) | [ VB (0 -259)
xD,,( Bmm Ez)/ ( 3mw Ez)}. 0
me mew

This determines the energy spectrum by the zeros of the parabolic cylinder function, i.e.

D, (-,/3””—‘” E”q) =0 (31)
h mw*

In the case that @* < 0 we have to replace w — iw in (30). In the special case @ = 0 the
corresponding Green function can be obtained by using the Green function for the linear
potential [45] and we get

12
Vg) p _ r 16 I 1213 B w2f3 _E
E 2 - =
=o(r", 73 B) =20 |:(r E)(r E)]

X {K:/s [@ (riﬁ - _g)s/z:I Lz [@ (riﬂ - E)m]

k ] E

fy‘—sz 2/3 B 32 LY —2mE w2/3 B 32
~Kip|——r"" -5 Kig| —/— {r'""" — %

h E h E

G(Vz)(ru,rf; E) 3(r:rﬂ)l/6 1-.( v)
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><1|f3 ('—'*?-I—BiE—‘V ZmB) /K[/g ('—%V 2mB) } (32)

I,(z) and K,(z) are modified Bessel functions [40, p 958]. Possible bound states are
determined by

B
K3 (_TIE ZmB) =0. (33)
Due to the property
. 1 rzyi2 2
siw =1 (5)" ks (37) 3

the zeros are determined by the zeros of the Airy function Ai(z), z = —a, (a, > 0,1 € Ng).
From the relation

A (—-g- J ‘;’;E ) ~0 (35)

we see that negative bound states are allowed only if B < 0. Hence it follows

32
E, = —‘,‘% (-I‘?) n € Ny. (36)

Therefore the singular term B/r*? must be attractive in order that bound states can exist,
Note that no resonance states exist because all zeros of Ai(z) are located on the negative
real axis [46, p 166]. The ground-state energy is Eo = —y/9m/202(|B|/2.341 .. )*/2, and
the accumulation point is E,, = 0.

3.3. A modified Rosen—Morse potential [

The third potential I want to consider has the form (x € R)

Valx) = A B c

3(x) = —m-%- rppe= + Treay
I perform the transformation x = In(sinhu), u > 0, together with the appropriate time
transformation. The emerging quantum potential is

(37)

AV{w) = _7:_2 ( 3 4+ 1 ) . (38)
8m \cosh®u  sinh®u
In order that the terms o —1/cosh?u cancel we must set C = ~3#2/8m. This gives for
the path integral
x{t")=x"
EWG" r7) = f Dx(2)
x{y=x"

e if’” m ., B A 3p? o
P B Jy 2x l+e™™ fT+eZ 8m(l+e*)

o . an2
= (coth u’ coth u")”zf Ef:"iET”' f ds”" exp [l (i - B+ E)s”]
0

= 27 7\ 3m
el L g ImE R + 14
i m m
4 Du(s)ex —f —-i¢2+Acothu+Tzz——)ds .
m}f (<) p[?z A (2 Im sinh? i
p(D=u’

(3%
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The path integral in the variable « is the path integral for the Manning-Rosen potential
Vaur{it) = —A coth u + B'/sinh® 4 [47]. From the spectral representation of the Manning—
Rosen potential we therefore derive the following quantization condition for the bound states
(n=0,1,..., Nax s

g _p _E (n+ L+ 2mE, R)? + mA%/2 (40)
8m " 2m E " (n+ 1+ /=2mE, /m)*

This can be rewritten into a cubic equation for /—E,:

2n 4+ 1) 32 a2l iﬁi)} _
7 N2m(~Ep " + [5(11 +3)" - ';I?(B ™ (—Ep)
3 142 2
2 [w ~(s- 2)} b DY g i
m 8m h
A’ e, mA? 3R\
+[%(n+§) +T—(B—%):|—OA (41)

On the other hand we obtain from the Green function representation of the Manning—Rosen
potential [11,28,48]
iy D(my — Le)P(Le +m+1)

B2 T{m+ma+ Dl (my —ma+ 1)

1 1 ekt oo g \immm)
x(l-{-u’l-{-u”) (I+u’1+u”)

U
XZFI(_LE'+m1vLE’+mI+I;m1 _m2+1;1+_<u)
<

GW (", x"y EY = (coth#’ coth u™)

1
XzFl(—LE'-I-ml.LE'-i-f?ﬁ’}-l;ml+mz+1; ) (42}
14+u.

Here sinhu = ¢, Lg = ~i + 1/2Zm(A — EN/h. mip = 3(s = /=2m{A + E/h),

s = 2/~2mE/h, E' = 31%/8m — B + E, and ;Fi(a, b; ¢; z) is the hypergeometric

function [40, p 1039]. The poles of the Green function determine the energy spectrum

which coincidences with the one determined in (40), and the corresponding residua give the

wavefunction expansion (s, = s(E,), ki = 3[1 + 3(sp +2n + 1) + 2mA/R* (s, + 2n 4+ 1)])
4mA

W(x) = NEP 14—
no () =N, B2 (s, 4+ 2n + 1)2

[(2k1 —n— 5~ D2k —n — 1)]‘/2
T(n+s,+ DT (2% —5, —n—1)
XM(I _ e—lu)(s,,-i-i)ﬂe-—z.u(k,—s./2—n—1)

x P2 tal(] — 27 %) (43)

B3 g 3 o R\
EF‘E(\/“/BW*\/JB—T—) )

3
_ St 132 — 2m(B — 317 /8m) /K’
2(n + )

§=2 [(n + 4 —m/n? (B - 3ﬁ2/8m)] (46)

R

(45)
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h2/2m(n + 3+ mA2/2 (B —31%/8m)

W) = m(n + 1+ /=2mE, /B)* 172 n
E, A(n + DI3(V—2mE, /i + R/3) —~ R/3+ 8])

The quantities D and Q are defined analogously as in (17). In order for a potential well
and bound states to exist we see from (37) that A and B should be positive with 4 < 28
(for simplicity I have set C = 0). The maximal number Ny, of bound states is found by
requiring £, < 0. The cut of the Green function determines the continuous spectrum, and
the cotresponding wavefunctions are determined by the method described in [48]. Thus the
wavefunctions and the energy spectrum of the continuous states are given by

q_;(Vs)(x) N(Vs)Jco thu u lpﬂ(u - I)[lP—(l +5531/2

145, +i(5— p) 145, —i(p+p) 1
x?_p,( 2 5 £ > ssp o LiT— (49)
1 fpsmh:rp
V) — —
Np-" = T k) [C(ky 4+ ky =T (k1 + k3 + 1)
x T (k| +k2+fc— DI(—ky + ko — & + 1))/ (50

[k = 2(1 +ip), ke = 2(1 + 5p). 5p = $(Ep), B = /2m(E, — A)/h, p € R] with energy
spectrum E, = R’ p?/2m — A+ B — 3n%/8m. The results concerning the bound states
coincide w1th [18]. Note that the transformation x = = ln( cosh? v) leads to a Rosen-
Morse potential. However, this transformation is no longer a real transformation which
causes interpretation difficulties, and therefore it is not used.

3.4. A modified Rosen-Morse potential Il

The fourth potential I treat has the form (x € R)
A Be™* 3n?
1+e® TreZ 8m(l4e ™)

I perform the same transformation x = In(sinhu) together with the appropriate time
transformation, and I have set the coupling in the third term equal to C = —3%%/8m
in order that it cancels with the corresponding term in the emerging quantum potential,
This gives for the path integral

(31)

Va(x) =

x(")=x*
K(Vd’)(?‘”, r’; T) = / pxa)

(=2

X ex if’” 75 - e i dt
P17 v 2" 1+e 2 JiteZ 8Bm(l+e )2

hz
= (coth «’ coth u™)!/? dE g IET/ ds”cxp[ (——A) :|

o 2R 8
u = Lo th 2mE fh? + 1/4
i m., cothu _.2m
- = B .
x (O)f Du(s)exp I:h'[; (2u + e +k w——— )ds]
u(Q=u'

(32)
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The path integral in the variable © is a path integral of a hyperbolic Scarf-like potential

2

h th
Viss () = — ( Vo + Vi coth? u + Vy—er
2m sinh «

as discussed in [28]. We identify Vo = 2mA/h*—1, V) = —QmE/n*+1), Vo = —2mB/R%.
It has energy eigenvalues
E, = h—z(v + V) — w [2(k; — kp — n) — )]?
n— W 0 I) m 1 2 '

From its spectral expansion we derive the quantization condition for the potential Vj
(n=0,1,..., Nyu):

A—E—sﬁz—l(JB E,~+—B—E,)— d ! (53
" %‘"‘2 — L — Ep) \/Z_m(n+§) )

This gives, after some algebra, a cubic equation in (—E,) (A = A+ C + A% C =
—35/8m, i = R(n + 3)//2m)

ARH—E,Y + (1272572 + X) — A2|(—E,)?
+ [16&%(,4 +CH+M-200+ 4&2)(;& i + 472 (A + C))] (—Ey,)

+ [16&212(/4 +C)~— ( +— + 47%(A + C)) ] (54)

From the Green function of the hyperbolic Scarf-like potential we derive the Green function
for the potential Vy:

2_m Plmy — LO)T(L, +my + 1)
#? Dlmy + my + DT (m) — ma + 1)
x{cosh u’ cosh u")—(mx—mz) {tanh &' tanh u!f)mrt-mz-{"l

G(V4)(xff, xr: E) =

1
XzFl(—Lu+m1,Lv+m1+1:ml—m2+1;———-—)

cosh2u<
X2 Fi(=Ly 4+ my, Ly +my + 15 mq + ma + 1; tanh? ) (55)
with sichu = €, my = n/2 £ JVo+V,—8mE/R, and where n =

VIV +1/4 L, = %(u — 1), v =Vi— WV, +1/4 Again, the poles of the Green
function determine the energy spectrum which coincidences with the one determined
in (53), and the corresponding residua give the wavefunction expansions, We obtain

(!q=%(1+v),kz=%(1+n),n=~/—ZT(E}T—T)/h,v=J2rn(B‘—-m 7)

\/ ~D + ‘/ ~D- = + -’35 (56)
1A%+ A)
R= yr? (57)
167232 (A + C) — [\ + B2/4 + 47%(A + O))?
= 452 (38)
RA2A(A + C +A) — (A2 + 4% (2 + BY4 + 47%A + O)]
- 272 9

1/2
W) = N0 (2ky =2k —2n =102k —n =1
=N, [ A (kg + M (2ky — 2Ky — 1)
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u\ 2172 o\ 22k
x+/cothu ( sinh 5) (cosh 5)
pA
xP[Zkg—l.Z(k[-kz—n)—l]( - 1) 60
" cosh? 5 ©0)

1/2
— E)JEE= B (J/A=E, +C+#
cho=((2A E)E; - B (Y + +n) -

AI3(R/3 — E,)* — R?/3+ 8]

The quantities D and ¢ are defined analogously as in (17). A potential well and bound
states exist if A < 0,0 < B < |A| [18], and the number Ny, of bound states is found by
requiring | E,| > B. The scattering states have the form [¢ = %(1 +ip),peR]

g \Zr-2hid/2 u \Ze=172
lIlf,V“’(u) = N‘gm.\/coth B (cosh 5) (sinh —)

2
X2 Fy (kl + ke — &, ky = ki — & + 1; 2ky; tanh? ;) (62)
1 psinh2zp
v — Mk +ky —)0(=k + &
N, I“(Zkz)\f 7ok ke =T (=k +h + k)
XDk + ks + & — DT (=ky + &y — & + 1)]V2 (63)

The results concerning the bound states coincide with [18].

4. Summary

In this article the path integral treatments of four so-called ‘conditionally exactly solvable’
potentials have been presented. Our approach showed that the path integral in the present
cases is far superior in comparison to other methods. In spite of the fact that the bound-
state energy levels could not be stated in closed form in the first two cases, closed form
solutions in terms of the Green function were still possible. The poles of the Green functions
(transcendental equations in terms of parabolic cylinder functions) gave the bound-state
energy levels, the cuts provided the scattering states.

In the second set of potentials the bound-state solutions are determined by a cubic
equation which considerably complicated the expressions analytically. In each of the two
cases the bound-state energy levels with the wavefunctions and the scattering solutions could
be obtained.

The results are rather satisfactory. In the Schridinger approach, be it the usual study
in non-relativistic quantum mechanics or a super-symmetric investigation, the potential
problem is not seen as a whole. In comparison, the path integral provides comprehensive
information, abouot the propagator, when it can be explicitly computed, the Green function
with its poles and cuts, the bound-state wavefunctions, the continuous spectrum and the
necessary boundary conditions. We also see that the interplay of various techniques was
needed to obtain the proper solutions. In all four cases a spacetime transformation was
essential. In the first two cases, its was not only necessary to know about the path integral
solution of a (shifted) harmonic osciilator or the linear potential, but it was even more
essential to know how to incorporate explicit boundary conditions into the path integral.
In the two modified Rosen—Morse oscillators two special path integral solutions had to be
known which are in turn based on the path integral solution of the modified Pdschi-Teller
potential.
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It is to be expected that in the future some other specific path integral solutions can
be found by relating known problems to more complicated (and therefore more reaiistic)
potentials, which can incorporate more parameters. In fact, it is possible to modify the
Natanzon potentials [49] in such a way that the four conditionally solvable potentials,
which have been discussed here, are a two-parameter subclass of a class of actually four-
parametric potentials which may be called ‘conditionally solvable Natanzon potentials’.
These considerations can, of course, also be extended to two and three dimensions.
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