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Abstract Some specific conditionally exactly solvable potentials are discussed within the 
path integral formalism. They generalize the usually known potentials by the incorporation of 
fractional power behaviour and strongly anharmonic terms. We find four different kinds of such 
potential: the first is related to the Coulomb potential, the second is an anharmonic confinement 
potential, and the third and fourth are related to the Manning-Rosen potential 

1. Introduction 

In  recent years there has been enormous success in solving path integrals exactly. Milestones 
in the development have been the path integral solutions by Feynman of the harmonic 
oscillator [1,2], the path integral solution of the radial harmonic oscillator [3-6], and the 
path integral solution of the Poschl-Teller and modified Poschl-Teller potentials [7-91, 
respectively. All these kinds of problem have in common that they correspond to either 
a Gaussian, Besselian or Legendrian path integration. The couplings and parameters of 
the potentials are always assumed to take on arbitrary real values. An extensive list of 
all potential problems along with other path integral solutions, say in homogeneous spaces 
[lo], will appear soon in a ‘Table ofFeynman Path Integrals’ [ l l ] ;  a classification scheme 
has already been announced in 112,131. It is remarkable that almost all of these solutions 
can be understood in terms of a group path integration, be it a group path integration on 
the entire group space, or where an extension with the introduction of additional dummy 
variables is necessary 19,141. 

However, there are a couple of problems which generalize the well known problems 
which are not entirely soluble by their own accord in the sense that all possible parameters 
can be freely chosen. These considerations can be made, of course, within the Schrijdinger 
equation approach or within the path integral formalism. In the following I will only be 
concerned with the path integral approach. One set of such problems is called ‘quasi-exactly 
solvable’ [IS]. This means that a certain constraint on the parameters must be imposed, 
and then only a few low-lying energy levels together with the wavefunctions can be stated. 
Another set of problems is called ‘conditionally exactly solvable’ [16-19]. They modify 
the usual potentials in quantum mechanics in a specific way such that they are quantum 
mechanically exactly solvable; however, the parameters and the coupling of the potentials 
are not completely free to choose. 

In this article I discuss four different potentials of the latter kind. The first potential 
generalizes and modifies the Coulomb potential. A 1 / f i  term is incorporated and adds 
significant long-range behaviour to the usual Coulomb interaction. As it turns out a 
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specific form of the centrifugal barrier must be chosen (actually attractive) in order that 
the corresponding path integral can be solved. As has been pointed out by Stillinger [20] 
this particular set-up can produce a wide barrier around an attractive origin. By manipulating 
the parameters the ground-state energy can be raised and lowered, and can also be moved 
to zero-energy; hence a potential with a bound-state character and a resonance character 
can be studied at the same time. Artificial as this looks, there exists an electrostatic charge 
density which actually produces such a potential field. A point charge located at the origin 
is accompanied by strong l / r4  and l/r5/* behaviour 1201. 

The second potential is a confinement potential with a dominant r Z p  behaviour for 
r + W. Again a specific form of the radial potential (attractive) is required in order that 
the path integral can be solved. The potential is therefore an anharmonic radial oscillator. It 
has played a role in the modelling of quark-antiquark forces for mesons in nuclear physics 
[211. 

As it turns out, both potentials are rather complicated concerning the proper formulation 
of the quantization condition. In each case it is necessary to solve a transcendental equation 
involving a parabolic cylinder function. This very point has been ignored in [16.19], where 
a naive solution was claimed. The authors did not take into account that the radial problem 
remains a radial problem even after the transformations, and the deceiving regularity of the 
transformed problem (a shifted harmonic oscillator) does not allow a coordinate continuation 
to the entire W (I sketch the naive solution, though). As we vdl see, it is not possible to 
state the propagator exactly. However, the corresponding energy-dependent Green function 
can be stated i n  closed form The proper quantization conditions follow from the poles of 
the Green functions. 

The third and fourth potentials are modifications of a Eckart potential [22] or a Rosen- 
Morse oscillator [23] and model potential troughs. These kinds of potential play a role in 
the theory of molecules [22,23], solitons and reflectionless potentials [24]. In the first of the 
two potentials the proper transformed potential is of the Manning-Rosen type 12.51, which 
was also used as a screened Coulomb potential [26,27] with exponential decay (s-wave 
Yukawa potential). The second leads to a hyperbolic Scarf-like potential [28,29] with an 
even stronger screening of the potential energy. The connection to supersymmetric quantum 
mechanics with all these potentials has been pointed out by Dutt ef al [ 181, Nag era1 1191 
and Papp [30]. 

Although exactly solvable, these potentials are complicated enough to be of serious 
consideration in modelling actual physical forces. By choosing a path integral approach 
we succeed in gaining comprehensive information about the bound-state solutions of these 
potentials (if they exist), and what is often more important, in the scattering states which 
eventually allow for the calculation of cross sections and phase shifts which will be taken 
into consideration elsewhere. 

This article is organized as follows. In the following part I sketch some necessary 
information concerning transformation techniques in the path integral. In the third section I 
present the four ‘conditionally exactly solvable’ potentials labelled V I ,  Vz. V3 and V4. The 
well-established spacetime transformation technique reduces each path integral problem 
to an already known one. The final result in each case includes the statement of the 
corresponding Green function, For the first two potentials, where the bound-state solutions 
are only implicitly known through a transcendental equation, this is sufficient. In the other 
two the bound-state wavefunctions, the energy spectrum, and the continuous states are 
displayed explicitly. The last section contains a summary and a short discussion. 
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2. Spacetime transformation technique 

In order to make the article self-contained, let us cite shortly the spacetime transformation 
technique, e.g., [5, 11-13,31-391, and references therein. We consider a path integral 

. .  
where it is assumed that the potential V ( x )  is so complicated that a direct path integral 
evaluation is not possible. Now a transformation x = F ( q ,  t) and the so-called 'time 
transformation' is implemented by introducing a new 'pseudo-time' s". In order to do this, 
one first makes use of the operator identity 

1 

where H is the Hamiltonian corresponding to the path integral K ( T ) ,  and f i . , (x ,  t )  are 
functions in x and f, multiplying from the left or from the right, respectively, onto the 
operator ( H - E ) .  Secondly, the introduced pseudo-time s" is assumed to obey the constraint 

(3) 

(2) fI(& f) -- - 
1 

H - E  f J X J ) f i ( x ,  t ) ( H  - E ) f , ( x ,  f )  

S'' 
t, , 1 dsfi(F(q(s). s))f,(F(q(s), s)) = T = f - f 

and has, for all admissible paths, a unique solution s" > 0 given by 

Here one has made the choice f i (F(q(s ) ,  s)) = f , (F(q(s) .  s)) = F'(q(s), s) in order that in 
the final result the metric coefficient in the kinetic energy term is equal to one. A convenient 
way to derive the corresponding transformation formulae uses the energy-dependent Green 
function G ( E )  of the kernel K ( T )  defined by 

where a small positive imaginruy part (6 > 0) has been added to the energy E. (Usually 
we do not explicitly write the ic, but will tacitly assume that the various expressions are 
regularized according to this rule.) For the path integral K ( T )  one obtains the following 
transformation formulae ( F ( q ,  t )  F ( q )  time-independent case only) 

with the tsansformed path integral I? given by 

(8) 
and the quantum potential A V  has the form 

A V ( q )  = - 3 -  -2- 
8m ( Ft2 F' (9) 

These formulae are sufficient for our purposes. 
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3. The potentials 

3.1. The modified Coulomb potential 

The tint potential we are going to study has the following form (r z 0): 
hZ y Zqz b 

V , ( r )  = -- - - + - 
2mrZ r f i '  

Zqz is a Coulomb coupling, b E R, and y is a constant which will be determined. Obviously, 
this potential is a generalization of a pure Coulomb potential. The centrifugal term usually 
makes no difficulty, but the r-"' long-range term significantly alters the behaviour of 
the potential for r + 00. 1 proceed in the canonical manner and perform a coordinate 
transformation r = U', i. = 2uu together with a time transformation AG = 4ujuj-j Asj in 
each short-time interval At, to the new time s(r) = $ d.r/uz(s). I obtain 

(1 1) 
This path integral as it stands is not solvable. However, if we set y = -&, the centrifugal 
term vanishes due to A V  = 3h2/8mu2, and we seem to have a shifted harmonic oscillator 
path integral. Let us for the moment continue with the naive analysis according to [16,19], 
where U E R is assumed. Performing the additional variable shift U = U - b/2E we get 

where wz = -8E/m. Provided U E R, the last expression can now be analysed in various 
ways. In order to obtain the discrete spectrum one can insert the explicit form of the 
propagator of the harmonic oscillator and can expand it by means of the Mehler formula to 
obtain the wavefunctions and the energy spectrum of the bound states of the path integral 
(1 1); second, one can insert the explicit form of the propagator and use a dispersion relation 
to obtain the wavefunctions of the continuous spectrum. The third possibility is to insert 
the Green function of the harmonic oscillator: by analysing its analytic pole structure it 
follows that the Green function of the harmonic oscillator must be evaluated at the energy 
E 3 4Zq2 - b 2 / E ,  i.e. by performing the s"-integration we obtain the Green function of 
the path integral (12) 

Here v - f + ( 4 2 q 2  -bz/E)/fiw, and D&) is aparabolic cylinder function [40, p 10641. 
The poles of G(E) yield the bound-state energy spectrum and wavefunctions and the cut 
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the continuous specmm. The poles are determined by the poles of the r-function and we 
obtain the 'quantization condition' 

4Zq2 - b2/E,, = Ul(n + $)q'w 

(n + 2) 1 2 2  f i  E, 3 + 2mZ 2 4  q E, 2 - Zq2b2mEn + mb4/8 = 0. 

n E No. (14) 
With some algebraic manipulations this can be cast into a cubic equation in terms of E,, 
yielding 

(15) 
From the generally three solutions of this equation, the physically relevant one is selected 
by requiring that for b = 0 a Coulombic spectrum should emerge. Hence we get 

mZqzb2 mb4 
S = -  T =  

2mZ2q4 
R =  

fi2(n + i ) z  h2(n + 4)' 8h2(n + $)2 

The bound-state wavefunctions then have the form 

& ( x )  are Hermite polynomials [40, p 10331. Up to the additional proper normalization 
factor NE. this is the result of [16,19]. Let us note that for the case Z = 0 we can repeat 
the analysis and obtain a discrete energy spectrum according to 

m b4 
8h2(n + i)2' E, = -/ 

This energy spectrum is of genuine non-Coulombic behaviour. 
However, this easy-to-obtain solution cannot be considered as correct! As pointed out 

in [20] a wavefunction with r'14 behaviour at the origin of a singular potential is physically 
unacceptable [41]. Therefore we must discard the above solution of [16,19] entirely. In 
(12) we have made the implicit assumption that it is possible to extend the variable U to the 
entire R. This is in contrast to the one-dimensional KustaanheimAtiefel transformation 
which maps R+ + R+ 142,431. In the usual radial Coulomb problem this is an obvious 
mapping because the radial Coulomb problem in the variable r is mapped onto a radial 
harmonic oscillator in the variable U .  Therefore the path integral (11) is a radial path 
integral with U > 0, and the path integral (12) is a radial path integral with U > -b/2E for 
fixed energy E. ?he additional linear term spoils the symmetry with respect to reflections 
in the variable U .  In [44,45] I have developed a procedure to deal with such problems 
within the path integral. We assume that we have evaluated a path integral problem with a 
potential V ( x )  in, say, the entire R. This path integral is called K ( " ) ( T ) .  The corresponding 
Green function is denoted by @")(E). Now we consider the path integral problem with 
the same potential V,  but with Dirichlet (D) boundary conditions at the location x = a  and 
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we consider the half-space x > a .  Then the Green function in the half-space x =- a is given 
by [44,451 

V )  I, = G(V)(X", x'; E )  - c( ( x  , a; E)G'V)(a, x'; E )  
Gtv)(a, a;  E )  

We identify the Green function (?(')(E) with (13) and obtain consequently 

This determines the energy spectrum by the zeros of the parabolic cylinder function, i.e. 

D, (-E$-) = 0 

This result is in accordance with [20]. I have indicated by U,, = U(.&) and w,, = w(E,,) 
the explicit dependence on E,. The analysis in I451 showed that the poles coming from the 
prefactor in (23) play no role in the corresponding boundary condition problem. The case 
b = 0 is contained in (23) by noting that for b = 0 the path integral (11) is a radial path 
integral in U with angular momentum I = 0 [ 5 ] .  

3.2. A radial confinement potential 

The second potential we want to consider has the form (r > 0) 

This potential models a confinement potential for quark-antiquark interactions [ 2 1 ] ;  however 
it is not quite oscillator-like, and has a singularity at the origin. We perform a spacetime 
transformation as before with r = u3I2. In doing that we set y = -2 in order to cancel 
the corresponding term in the emerging quantum potential A V  = 5h2/32mu2 due to the 
transformation. Hence we obtain 
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In the last step we have set G = 30/2 and U = U - E/mo2.  Inserting the Green function 
for the harmonic oscillator gives the Green function for the path integral in the variable U 
(U E R): 

with v = -i-3(E2/2mw2-B)/ho. 2 2  Provided U E B, the poles oftheGreen function would 

determine the energy spectrum given by E, = ,/2mw2[2(n t $)fi0/3 + B ]  for n E No 
(0' > 0. B > -hw/3) [19]. But for the same reasons as in section 3.1 this 'solution' must 
be discarded. 

In order to obtain the proper solution in the half-space U > -E/mwZ for fixed energy 
E ,  i.e. for the potential V2, we proceed similarly as for the previous case and obtain 

In the case that w2 < 0 we have to replace w + iw in (30). In the special case U = 0 the 
corresponding Green function can be obtained by using the Green function for the linear 
potential [45] and we get 
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. .  
I&) and K, ( z )  are modified Bessel functions 140, p 9581. 
determined by 

(32) 

Possible bound states are 

Due to the property 
1 z '12 

Ai(z) = - r r 3  (-) K ] / 3  (5~~~~) (34) 

the zeros are determined by the zeros of the Airy function Ai(z), z = -an (or, > 0, n E No). 
From the relation 

(35) 

we see that negative bound states'are allowed only if B c 0. Hence it follows 

?I E N*. (36) 

Therefore the singular term B/r2/3  must be attractive in order that bound states can exist, 
Note that no resonance states exist because all zeros of Ai(z) are located on the negative 
real axis [46, p 1661. The ground-state energy is Eo = - m ( I E l / 2 . 3 4 1  . . .)3/2, and 
the accumulation point is Em = 0. 

3.3. A modiJied Rosen-Morse potential I 

The third potential I want to consider has the form (x  E R) 

. .~ 
I perform the transformation x = In(sinhu). U > 0, together with the appropriate time 
transfonnation. The emerging quantum potential is 

In order that the terms o( -l/cosh2u cancel we must set C = -3R2/8m. This gives for 
the path integral 

x(i")=x" 

~("3)(r" ,  r'; T) = j W t )  

X(,')=X' 

- x -  -- B A 3h2 )] dt] xexp [ i l"  ' 2  ( 1 +e-& - 8 m ( l +  
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The path integral in the variable U is the path integral for the Manning-Rosen potential 
Vm(u) = -A coth U + B'/ sinh' U [47]. From the spectral representation of the Manning- 
Rosen potential we therefore derive the following quantization condition for the bound states 
(n = 0,1, .  . . , N-):  

3hZ h2 mA2/2 
8m 2m (n + f + &'ZKiZ/h)z' 

B -- - E - - ( n +  f+=/h)'+ 

This can be rewritten into a cubic equation for 

+ 
2 

(40) 

On the other hand we obtain from the Green function representation of the Manning-Rosen 
potential I 1 1,28,481 

I Here sinhu = ex, LE. = -5  + f , /2m(A - E')/h, m1/2 = i(s i ,/-2m(A+ E')/h), 
s = 2 w / h ,  E' = 3h2/8m - B + E ,  and z F l ( a , b ; c ; z )  is the hypergeometric 
function 140, p 10391. The poles o f  the Green function determine the energy specmm 
which coincidences with the one determined in (40), and the corresponding residua give the 
wavefunction expansion (s. = s(E,), kl = ; [ I+  $(s,, t 2n t 1) + ZmA/h'(s, + 2n + l ) ] )  

(V3) 1 + 4m A J h2(sn + 2n + 1 ) 2  
'P~v3'(x)  = NE" 

5(n  + 1)' - 2m(B - 3h2/8m)/hz 
R =  

2(n + . 
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h2/2m(n + $4 + mA2/2 - (B - 3hZ/8m) 
(n + ;)EZ 

T = m  

The quantities 3 and Q are defined analogously as in (17). In order for a potential well 
and bound states to exist we see from (37) that A and B should be positive with A c 2B 
(for simplicity I have set C = 0). The maximal number N- of bound states is found by 
requiring E, c 0. The cut of the Green function determines the continuous spectrum, and 
the corresponding wavefunctions are determined by the method described in [48]. Thus the 
wavefunctions and the energy spectrum of the continuous states are given by 
qj(vl)(x)  = ~ p ) ~ ~ - i p / 2 ( ~  - 1)li~-(lts~)l/z 

P 

;s ,+l ; -  (49) 
1 +s, + i(B - p )  1 +s, - i(B + p) 

x A (  2 

xr(ki + k2 + K - l)r(-ki + kz - K + (50) 
[K = i ( l  + ip), kz = f ( l  + sp).sp = s(E,) .  5 = , / w / h ,  p E RI with energy 
spectrum E ,  = h2p2/2m - A + E - 3h2/8m. The results concerning the bound states 
coincide with [181. Note that the transformation x = iIn(-cosh2 U) leads to a Rosen- 
Morse potential. However, this transformation is no longer a real transformation which 
causes interpretation difficulties, and therefore it is not used. 

3.4. A modifred Rosen-Morse potential 11 

The fourth potential I treat has the form (x E W) 
A Be-" 3hz 

V&) = - - 
1 + e-& - 8m( 1 + e-a)z ' 

I perform the same transformation x = ln(sinhu) together with the appropriate time 
transformation, and I have set the coupling in the third term equal to C = -3h2/8m 
in order that it cancels with the corresponding term in the emerging quantum potential. 
This gives for the path integral 

X ( I * ) = X "  

K("4)(r", r ' ;  T) = j W t )  
x(I')=x( 

U(s")=U" 

cothu 2mE/h2 + 114 
'Du(s)exp [ i ds' (,U2 + B z  +h2 

Zm tanh'u 
U(O)="' 
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The path integral in the variable u is a path integral of a hyperbolic Scarf-like potential 

coth U 
sinh U 

vo + VI coth'u + vz- 2m 

as discussed in [28]. WE identify Vo = 2mA/h2-  $, v, = - ( h E f i 2 + $ ) ,  v2 = - 2 m ~ / ~ 2 .  
It has energy eigenvalues 

h2 fi' 
2m 8m E - -(VO + V I )  - -[2(k1 - k2 - n )  - 1)12. 

From its spectral expansion we derive the quantization condition for the potential V, 
(n = 0, 1, . . , , N-): 

(53) A - E ,  - 3A' - = - ( J G - d q )  1 - -(n h + I) I J 8m 2 & 
This gives, after some algebra, a cubic equation in ( - E n )  (A = A + C + Zz, C = 
-3A2/8m, ii = h(n + $)I&) 
4iiZ(-En)' + [12ii2(iiZ + A )  - A2](-E.)2 

(54) 

16ii2A(A+C+h)-2(A+4iz) ( -En)  

16Z2A2[A + C )  - 

From the Green function of the hyperbolic Scarf-like potential we derive the Green function 
for the potential V4: 

x(cosh U' cosh (tanh U' tanh u")m1+m2+1 

x ~ F ~ ( - L , + m l , L , + m l  + 1 ; m 1  +mz+1;tanh2u,) (55) 
with sinhu = e", m1.2 = 712 f ~ V O +  VI - 8mE/hZ,  and where 7 = 
J V i  + Vz + 114, L ,  = ;(U - I), v = J V I  - Vz + 114. Again, the poles of the Green 
function determine the energy spectrum which coincidences with the one determined 
in (53), and the corresponding residua give the wavefunction expansions. We obtain 

16i2AZ[A + C )  - [A2 + B2/4 + 4ii2(A + C)I2 
4,' 

T =  
... 

8ii2A(A + C t A) - (A2 + 4ii2)(AZ + B2/4 + 4ii2(A + C ) ]  
2 3  

S =  
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(2h - E,),/- ( J A  - E, + C + ii 
i i [ 3 ( R / 3  - En)2 - R 2 / 3  + SI N E )  = 

The quantities D and Q are defined analogously as in (17). A potential well and bound 
states exist if A e 0.0 < B c IAl [le], and the number NIMx of bound states is found by 
requiring IE,,I > B .  The scattering states have the form [ K  = $ ( l  + ip), p E R] 

+ kz - K ,  kz - ki - K + 1; 2kz; tanh’ - 

x V k i  + kz + K - l ) r ( - k i  + kz - K + I)]’/*. 

The results concerning the bound states coincide with [18]. 

4. Summary 

In this article the path integral treatments of four so-called ‘conditionally exactly solvable’ 
potentials have been presented. Our approach showed that the path integral in the present 
cases is far superior in comparison to other methods. In spite of the fact that the bound- 
state energy levels could not be stated in closed form in the first two cases, closed form 
solutions in terms of the Green function were still possible. The poles of the Green functions 
(transcendental equations in terms of parabolic cylinder functions) gave the bound-state 
energy levels, the cuts provided the scattering states. 

In the second set of potentials the bound-state solutions are determined by a cubic 
equation which considerably complicated the expressions analytically. In each of the two 
cases the bound-state energy levels with the wavefunctions and the scattering solutions could 
be obtained. 

The results are rather satisfactory. In the Schrodinger approach, be it the usual study 
in non-relativistic quantum mechanics or a super-symmetric investigation, the potential 
problem is not seen as a whole. In comparison, the path integral provides comprehensive 
information, about the propagator, when it can be explicitly computed, the Green function 
with its poles and cuts, the bound-state wavefunctions, the continuous spectrum and the 
necessary boundary conditions. We also see that the interplay of various techniques was 
needed to obtain the proper solutions. In all four cases a spacetime transformation was 
essential. In the first two cases, its was not only necessary to know about the path integral 
solution of a (shifted) harmonic oscillator or the linear potential, but it was even more 
essential to know how to incorporate explicit boundary conditions into the path integral. 
In the two modified Rosen-Morse oscillators two special path integral solutions had to be 
known which are in turn based on the path integral solution of the modified Poschl-Teller 
potential. 
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It is to be expected that in the future some other specific path integal solutions can 
be found by relating known problems to more complicated (and therefore more realistic) 
potentials, which can incorporate more parameters. In fact, it is possible to modify the 
Natanzon potentials [49] in such a way that the four conditionally solvable potentials, 
which have been discussed here, are a two-parameter subclass of a~class of actually four- 
parametric potentials which may be called 'conditionally solvable Natanzon potentials'. 
These considerations can, of course, also be extended to two and three dimensions. 
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