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Abstract 

The tracking environment in the HI Forward Track Detector, where the hit multiplicity from proton fragments is high, is 

particularly hostile. The techniques and software which have been developed for pattern recognition and Kalman fitting of 

charged particle tracks in this region are described in detail. 

1. Introduction 

The Forward Track Detector (FTD) is part of the HI 
detector used at the HERA accelerator to study high 

energy electron-proton collisions. This paper describes the 
software used for the pattern recognition and fitting of 

tracks measured by the Forward Tracker. To set the 
framework and to motivate the design of the FTD, Section 

1 discusses the HERA accelerator and its physics goals, 
and outlines the construction of the Hl detector. Section 2 

describes the hardware of the FTD. The techniques used to 

find the hits in the drift chamber data are presented in 
Section 3, and calibration and monitoring procedures are 

described in Section 4. Sections 5 and 6 discuss the 
algorithms developed for finding line segments in the drift 
chambers and the methods used for joining the segments to 
form tracks. A Kalman filter technique is used for de- 

termining track parameters; this is described in Section 7. 
The method used to align the Forward Tracker is outlined 

in Section 8. Details of the performance of the software 
and the relation between this performance and that of the 

hardware are given in Section 9. Section 10 summarises 
the conclusions. 

1.1. The HERA accelerator 

The HERA accelerator has been constructed to investi- 
gate lepton-quark interactions at high energy by colliding 
30 GeV electrons with 820 GeV protons. The experimental 
programme at HERA includes searches for new physics, 
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such as massive new bosons, super-symmetric particles, 
lepton and quark substructure. and heavy leptons. It 
permits measurement of the proton structure functions up 

to values of Q’ that are two orders of magnitude greater 
than previous experiments and down to values of xs, two 

orders of magnitude lower [I]. 

1.2. The HI detector 

The kinematics of HERA collisions lead to an asymmet- 

ric detector design [2]. The centre of mass of the collision 

moves in the proton direction, and consequently any 
collision products are boosted along this direction. The HI 

detector is designed to provide a smooth and homogeneous 
response from small forward angles (with respect to the 
proton direction) through to backward angles. The mea- 

surement of charged tracks at small angles requires a 
Forward Tracker. 

The detector layout is illustrated in Fig. I. It includes: 

The Central Track Detector (CTD), (I), made up of a 
central jet chamber (CJC), interleaved with two z-cham- 

bers and multi-wire proportional chambers (MWPCs). 
The Forward Track Detector, (2), consisting of three 

layers of Radial and Planar drift chambers with MWPCs 
and transition radiators. The FTD is described in greater 
detail in the following section. 
An electromagnetic calorimeter, (3), with lead plates as 
the showering material and liquid argon (LAr} as the 
detector medium in the forward and barrel region, and a 
lead scintillator sandwich (BEMC), (8), in the backward 
region. 
An hadronic calorimeter, (4), using LAr with stainless 
steel absorber plates. 
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Fig. 1. Schematic y-z view of the Hl detector. Also included is the luminosity monitor, situated downstream in the electron direction (not 

to scale). The nominal interaction point is marked by . . See text for key. 

A superconducting solenoid giving a field of about 
1.2 T, (5), outside the hadronic calorimeter. 
An outer shell of iron plates to contain the return 

magnetic flux, (6). The iron is interleaved with plastic 

streamer tubes to act as a tail-catcher for the hadronjc 
calorimeter and as a muon detector and tracker. 

Additional muon detection, provided by three layers of 
muon chambers in the barrel and forward region. along 
with a forward muon spectrometer, which consists of a 

magnetised iron toroid, (7) and six layers of drift 

chambers, ( IO). 
A plug calorimeter, (9), to detect hadronic energy at 
small angles (>0.7”) built as a copper and silicon 

sandwich. 
A time-of-flight scintillator, (I I), to veto events not 

originating at the vertex. 
A luminosity monitor, ( 12). 

1.2. I. The HI coordinate system 
The Hl coordinate system is right-handed and is defined 

with respect to the Central Tracker. The nominal positive 
z-axis is in the proton direction with the y-axis vertical; 0 
and $ represent the polar and azimuthal angles respective- 
ly, and in this paper R denotes the radial coordinate in the 
X, v plane. The origin of the coordinate system is defined 
to be at the centre of the CTD (the nominal e-p interaction 

point). 

2. Overview of the Forward Track Detector 

The Hl Forward Track Detector, shown in Fig. 2, covers 
the laboratory angles between 5” and 30” with respect to 

the proton beam direction. The sensitive region of the 
chambers is the cylindrical volume I34 cm < z < 254 cm. 

and 1.5 cm <R < 79 cm. This region is a particularly 
hostile environment for tracking. The primary track mul- 

tiplicity. typically low momentum products from frag- 

mentation of the proton, is -IO- I5 and is strongly 
concentrated at small radii. In addition, material in the end 

wall of the CTD and around the beam pipe produces a 
large number of secondary tracks. This results in a high hit 
density with frequent overlapping of hits and loss of 
information The problem is exacerbated by the presence 

of a collimator situated in the beam pipe at z = 204 cm, as 
shown in Fig. 2, which floods the rear of the Tracker with 

Fig. 2. Schematic view of the Hl Forward Track Detector. The 
polar angles for tracks from the origin are also indicated. 
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additional secondary tracks, doubling the number of hits in 

that region. Consequently 80% of all tracks and 60% of 

those with momentum, p, >O.S GeV/c which penetrate the 

Forward Tracker are secondaries. 
The design obiectives for the Forward Tracker were [3]: 

momentum resolution for tracks (p > IO GeV/c) con- 
strained to the primary vertex of (lip’ - 0.003 (GeV/ 

c)-‘, 
angular resolution of <l mrad, 

efficient track pattern recognition, 

efficient electron identification, with pion contamination 
below 10% for particle momenta up to 60 GeV/c. 

a fast ray trigger (provided by the MWPCs). 
The last two points are not discussed in this paper [4]. 
These objectives were subject to the overall constraint of 

introducing the minimum amount of material before the 
calorimeter [ 51. 

The detector is realised as three identical sub-units, 
known as Supermodules, numbered from 0 to 2 with 

increasing Z. Each Supermodule, when seen from the 

direction of the incoming proton, consists firstly of three 

layers of Planar drift chambers, oriented at 0”, $60” and 
-60” to the vertical. followed by an MWPC, then transi- 

tion radiator material, and finally a Radial drift chamber. 

As each part of the Supermodule uses a different gas 
mixture (Ar/C,H, for the Planar chambers and MWPCs, 
He/CO? for the transition radiator and Ar/C>H, or Xe/ 
He/C2H, for the Radial chambers) each Supermodule is 

housed in a correspondingly segmented gas tank. The tank 
also forms the mechanical frame for the FTD, supporting it 
on rails inside the liquid argon cryostat. 

2.1. The Radial chambers 

Each of the three Radial drift chambers, situated approx- 
imately 1.7, 2.1 and 2.5 m from the interaction point, 

consists of 48 wedge-shaped segments, each segment 
subtending 7.5” in 4 [6]. The layout of a Radial chamber 
is shown in Fig. 3. Each segment contains a plane of 

twelve sense wires, spaced apart by I cm along the beam 
direction, and eleven intermediate field wires, strung 
between a central hub and the outer shell. The sense wires 

are alternately staggered by 288 km out of the true radial 
wire-plane, to permit resolution of the left/right track 

ambiguity. 
The radial wire geometry described above was dictated 

by the following considerations: 
the available space is filled most efficiently, providing 

drift cells of smaller size at smaller radius, where track 
illumination is higher; 
multi-track pattern recognition is optimised, because a 
track makes hits which have a linear dependence of 4 
on i: 
the drift time measurement is an accurate determination 
of the track sagitta in the R-4 plane (orthogonal to the 
magnetic field), so that optimum particle momentum 
precision may be achieved. 

Fig. 3. Perspective schematic of a Radial chamber. 

The sense wires are 50 pm diameter Stablohm 800. The 
simultaneous requirements of having the chamber operate 

in a proportional mode for energy loss measurements and 

of demanding total ionisation collection for efficient 

transition radiation (X-ray) detection dictate the choice of 
relatively large diameter sense wires. At the hub each 

sense wire is connected to its partner 105” away in 4; each 

such wire-pair is read out at the outer circumference of the 
chamber and the radial coordinate reconstructed from 
charge division along the wire-pair. 

2.2. The Planar chambers 

The Planar system consists of three identical modules 
situated approximately 1.4, 1.8, and 2.2 m from the 

interaction point [2]. Each module consists of 12 planes of 
wires perpendicular to the z-axis. Each plane contains 32 
parallel sense wires of diameter 40 km with a spacing of 
5.7 cm. These wires form a sensitive disc of radius 79 cm 

perpendicular to the beam direction. There is a concentric 
I5 cm radius hole in the disc for the beam pipe, and wires 
that would otherwise cross this are split into two separate 
parts. Within a module the first four planes have wires 
which are aligned vertically, the next four at 60” and the 
final four at -60” to the vertical. These three sets of planes 
are referred to as the X, U, and V orientations respectively, 
Fig. 4. 

An orientation consists of 32 cells each containing four 



Three orientations each Three orientations in each module 

z- axis ________ 

a) b) 

Fig. 4. Details of Planar orientations. (a) A full Planar module comprising three orientations and (b) the contiguration of the X, U. V 

orientations within the Forward Tracker 

sense and ten grid wires. The sense wires are separated by 

0.6 cm along the z axis and staggered by 300 pm either 
side of the cell centre with a maximum drift distance of 

approximately 2.8 cm, see Fig. 5. 
The three orientations of a Planar chamber module allow 

the reconstruction of a track segment that is well defined in 
both the radial and 4 directions and thus the Planar 

chambers complement the Radial chambers that measure 

accurately in 4 only. 

3. Hit finding in the drift chambers 

The sense wires in the Forward Tracker are read out 

using 104MHz 8 bit nonlinear Flash Analogue-to-Digital 

Converters (FADCs) giving a history of the chamber 
pulses in time-slices of 9.6 ns. In the Radial chambers both 

ends of each wire-pair are instrumented, whereas in the 
Planar chambers the wires are instrumented at one end 

only. 
When an event is triggered this history is scanned for 

regions containing significant raw data [2]. These regions 

together with a number of leading time-slices are then 

transferred to the next stage of the data acquisition, the QT 
analysis. This analysis performs a ‘hit’ search on these 

data, and for each hit found, corresponding to the ionisa- 

tion left behind by a charged particle passing through the 

detector, a charge (Q) and time (t) are determined. 
The QT analysis techniques for the Radial and Planar 

chambers are described separately below. 

Detail of a Single cell 
Grid wires not shown 

Fig. 5. Details of Planar cells. 
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3.1. Radial QT 

The raw data are linearised, a pedestal level is de- 

termined and a search is then made for hits in each region 
containing significant data. Having found a hit, a time and 
charge are determined for each end of the wire-pair ( + , -) 
separately. A single time for the hit is then calculated by 

taking a weighted mean of the two times: 

f = (Q+t+ + Q_f_)l(Q+ + Q_) (1) 

Using a mean weighted by the charge reduces the 

influence of the degraded precision of the time calculated 
at the end of the wire-pair with the smaller pulse. Both 

charges are written out, allowing the later determination of 
the coordinate along the wire-pair by means of charge 
division. These steps are described in more detail below. 

3.1.1. Hit search 
The disposition of sense and field wires in the Radial 

chambers means that the charge arriving from a track 

through the cell, even for one at normal incidence, is 

spread over a period of time corresponding to 5 mm drift 
distance (the different geometry in the Planar cell results in 

the corresponding spread being over 1 mm). The Radial 

QT therefore uses a first electron method to avoid prob- 
lems with anisochronicity. along with a strict requirement 

on the trailing edge of the pulse to avoid problems with 
resolved structure in an otherwise clean single hit. 

A hit is defined as two or more time-slices above a 
threshold in the weighted difference of samples (weighted 
DOS), possibly with intervening time-slices below thres- 

hold, followed by at least two time-slices where the 

weighted difference of samples is negative, without inter- 

vening time-slices above threshold. 

The difference of samples (DOS) is defined as [7]: 

DOS,(n) = FADC,(n) - FADC,(n - I). (2) 

where FADC,(n), the pulse height, is the linearised content 
of the nth time-slice from end i (2) of the wire-pair, 

weighted DOS, W(n). is then defined as the product: 

W(n) = c (FADC,(n) - P, -A) X c DOS,(n), 
I=+- ,=+- 

The 

(3) 

where the pedestal level, P,, is calculated from the flat 

region of data at the beginning of the sample and A defines 

an arbitrary offset from this pedestal level which allows 
tuning of the detection efficiency for small hits. An initial 
estimate of the time of the hit at each end of the wire-pair 
is defined as the start of the time-slice of the first 
maximum in 2, _ + DOS,(n) in the data above threshold in 

W(n). 
This method of locating hits has advantages compared to 

conventional techniques, such as the simple threshold cut 
employed by the scanner, or derivatives such as a threshold 

cut in DOS, which do not cope well with a non-uniform 

background: 

using the combined information from both ends of the 
wire-pair, namely the total charge of the hit, makes the 
hit search insensitive to the effects of charge division 
along the wire-pair length (this length is sufficiently 

small that propagation delays along the wire-pair may be 

neglected at this stage); 

using the pulse height and DOS simultaneously reduces 
the sensitivity to vagaries in the rise time of the pulse. 

Overall W(n) forms a strong signal for all but the 
smallest pulses but is relatively insensitive to an oscillat- 

ing or gently rising baseline; 
combining the information from both ends of the wire- 

pair reduces the sensitivity to electronic pickup, which 

tends to be out of phase at either end of the wire-pair; 
W(n) is also sensitive to any further pulses that may be 
behind the initial detected pulse. 

3.12. Time determination 
For each hit found a time is calculated separately for 

each end of the wire-pair using a first electron timing 

method. The local DOS maximum within two time-slices 

of the initial estimate of the hit time defined above is found 

and used as the basis for the calculated time. This is 
formed by projecting the gradient given by the DOS of this 
time-slice back down to the pedestal level as shown in Fig. 
6. In essence this is a form of constant fraction dis- 
criminator, with the fraction set at zero [8]. The dis- 

tribution of the offset of this time relative to the start of the 
time-slice containing the local DOS maximum is shown in 

Fig. 7. 

The assumption that the time-slice of maximum DOS is 

the nearest time-slice to the “true” time of the hit, along 

with there being no correlation between the 104 MHz 
clock and the true hit time, leads to the conclusion that the 

distribution in Fig. 7 should ideally be a “top hat” 

function of unit width, corresponding to the distribution 
within a single time-slice. With the assumption that this 
offset is a monotonic function of the true time. the 

calculated time may be improved by applying a trans- 

Gradient defined by time 
slice of maximum DOS 

!: '1 
Offset i I$ 

Fig. 6. Time determination using a first electron method 



232 S. Burke et al. I Nucl. Instr. and Mrth. in Phys. Res. A 37.1 (1996) 127-260 

0.03- 

0.02 - 

0.01- \ 

0.00 
-2.5 -2.0 -1.5 -1 .o -0.5 0.0 0.5 

Offset (FADC time slices) 

Fig. 7. Distribution of the leading edge intercept with the base 

line. relative to the start of the time-slice of maximum DOS. 

formation to the observed offset such that the resultant 

distribution does have the desired “top hat” shape [9]. 

Illustrated in Fig. 8 are the cumulative probability 

distributions for the observed offset distribution and for the 

desired “top hat” distribution. The transformation from 

the first to the second is obtained by taking the cumulative 
probability value corresponding to a particular offset in the 
first distribution and using this probability to read off the 
corrected offset in the second distribution, as illustrated by 

the line in the figure. 
The above analysis is valid for each end of the wire-pair 

separately. For the average time for the hit derived as in 

Eq. (1) the effect of the weighting by charge in the time 

determination is taken into account by using a charge- 

weighted intercept distribution and then proceeding as 

outlined above. 

3.1.3. Charge determination und radius measurement 

Reconstructing the radial coordinate of the hit by 

measuring the timing difference between each wire-pair 
end depends on the resistance-capacitance-inductance 

(RCL) distribution along the anode: in contrast charge 

-2.5 -2.0 -1.5 -1 .o -0.5 0.0 0.5 
offset (FADC time slices) 

Fig. 8. Cumulative probability distribution corresponding to Fig. 

7 for the first electron timing algorithm and for the desired “top 

hat” function. The observed offset is transformed to a corrected 

value as shown. 

division depends only on the ratio of the resistances to 

either side of the impact point and is independent of the 

capacitance and inductance distribution [IO]. For this 

reason the Radial chambers measure the radial coordinate 
by charge division, so that the wedge shape of the drift cell 

and the presence of the hub connection do not affect the 

intrinsic linearity of the measurement. This does however 
result in the radial coordinate measurement being sensitive 

to overlapping hits. 
To obtain the charge at each end of the wire-pair the 

pulse height above pedestal is summed for 12 FADC 

time-slices. starting 2.0 time-slices before the hit time as 

calculated at that end of the wire-pair, using linear 
interpolation within a time-slice at each end of the range. 

Using a fixed interval relative to the time of the hit, rather 
than the data between two threshold values, results in the 

measured charge remaining closely proportional to the 
total charge. Were the integration interval allowed to vary, 

pulses which have a particularly long or high trailing edge 

would result in an overly large pulse integral and small 

pulses would be unnecessarily truncated, introducing extra 
systematic effects into the radial coordinate determination. 

The method of integration. the range and the offset of this 
range relative to the hit time have been tuned on data taken 

in a test beam [9]. 

_?. 1.4. Multiple hit analysis 

Essentially the same techniques as described above are 
used in the case where multiple hits are resolved. The hits 

are analysed chronologically. The time for the first hit is 

calculated as above, and then the charges. The charge 

integration interval is however restricted if necessary to 

finish before the following hit. The response of the first hit 
is then removed from the data by taking the pulse height 

just before the start of the next hit and using this to 
subtract the tail of the earlier pulse, assuming an exponen- 
tial decay. Slightly different decay constants are used 

depending on the observed coordinate along the wire-pair, 
to take into account the effect of the different RCL loads 
seen to each end of the wire-pair. Once this subtraction has 
been performed the analysis of the next hit is exactly the 

same as for the first, repeating this prescription until all 

hits have been analysed. 

With the definition of a hit as given in Section 3.1.1 it is 
impossible to resolve hits separated by less than 4 time- 
slices, corresponding to about 1.2 mm; those separated by 
more than 6 time-slices are resolved with near 100% 
efficiency (Table 1). A conservative estimate of the two- 
track resolution is therefore close to 2 mm. 

Table 1 

Distribution of hit separations 

Separation in time-slices 4 5 6 7 

Number of hits 7112 49543 105 016 102 151 
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Table 2 

Hits and inefficiencies for the 12 wire planes of Radial Super- 

module 0 for a typical run 

z plane Regions Hits No hit found [%I 

0 29 526 29 201 12.9 

1 46 224 60 137 3.6 

2 41 160 66 244 2.1 

3 48 134 68 791 2.1 

4 48 236 69 546 1.9 

5 48 423 70011 2.0 

6 49041 71 181 2.0 

7 48 880 71 154 2.1 

8 46 9.55 67 633 2.0 

9 47 291 67 812 2.2 

IO 46 958 67 879 2.0 

11 46 374 70 867 2.8 

3.1.5. Hit $nding efjcienq 

An upper limit for the inefficiency of the QT algorithm 
can be determined from the fraction of raw data regions in 

which no hit is found. Note that the number of regions is 
wire dependent due to nonuniformity of the electric field, 

especially towards the front of the chamber. The total 
number of hits detected by the QT analysis in the regions 

of raw data is shown in Table 2. Also shown is the 

percentage of regions where no hit is found. 

With the exception of the front wire, the proportion of 

regions of raw data passed to the QT analysis where no hit 

is subsequently detected is 2.2%. This rises to 12.9% for 
the front wire. Visual scanning of these regions of data 

cross-checking with the signal on adjacent wires, shows 
that a sizeable proportion of the empty regions genuinely 

should produce no hits. The hit finding efficiency is 

therefore better than 97.8% for wires 1 -I I. 

3.2. Planar QT 

The requirements on charge measurement in the Planars 
are less strict than in the Radials because no charge 

division is performed. A different scheme is therefore 
adopted in which the calculation of time and charge follow 

a strategy which is designed to be fast and robust in the 

presence of multiple hits. 

3.2.1. Cluster seurch and charge determination 

The cluster finding procedure is illustrated schematically 

in Fig. 9 which shows a cluster, as might be formed by two 

overlapping hits with a separation ( 1.3 mm) close to the 

limit of resolving power of the system. 
After linearisation of the raw data a search is made for 

regions where the FADC bin contents exceed a threshold 
(a) defined by the pedestal (the mean of the first five 

scanned time-slices (b)) plus a fixed offset. Provided that at 
least four such adjacent time-slices are identified, the 

region is defined as a cluster (cc). the bins above threshold 

are summed to form an estimate of the overall charge (Q). 
and pointers to the start and end of the cluster are passed to 

the following hit search step. 

3.2.2. Hit seurch and time determination 

A hit search is performed on each of the identified 

clusters. The procedure is illustrated in Fig. 10, which 
shows the same data as Fig. 9. 

The characteristically fast rise time of the pulses (typi- 

El hi1 

q hit2 

0 pedestal 

-50. .““, ,“. . . . . , “1,. “1 

1 

FADC slice (9.6 ndslice) 

Fig. 9. Schematic identification of a cluster in the Planar FADCs. See text for definition of (a), (b) and (c) 
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Fig. 10. Hit identification and timing using the DOS method applied to a cluster. See text for definition of (a), (b) and (c). 

tally 30 to 40 ns) associated with charged particle ionisa- 

tion can be used as a trigger for hit identification. This is 

achieved, as for the Radial chamber analysis. by formation 

of a DOS by numerical differentiation of the FADC 

spectrum (Eq. (2). applied to single-ended readout). The 

rising edges of pulses reveal themselves as sharp positive 

peaks in the resulting DOS spectrum ((a) and (b) in the 
figure). Hits are defined as groups of at least two adjacent 
bins satisfying two conditions: 
l each bin in the group must have DOS greater than zero; 
9 the hit amplitude, A = Xgroup DOS@), must exceed a 

fixed threshold. 
A single negative DOS bin ((c) in the figure) is sufficient to 
resolve hits with this algorithm. 

The time of each hit, relative to the start of the scanned 
range in units of FADC bins. is computed as the weighted 
average over the bins in the group: 

t = c n ’ DOS@) 
A (4) 

This technique is particularly stable in the presence of 
background, which is removed up to first order by the 

explicit differentiation in the DOS. Provided that the 

background, b, for example the trailing edge of an earlier 

hit, can be approximated as linear (b = a + c. n) across the 
leading edge of the pulse, it contributes a constant level c 

to the DOS with no significant shift in the hit timing. The 

two-track resolution is similar to that for the Radial 

chambers. 

3.23. Charge estimation for multiple hits 

The charge of each identified cluster is distributed 
between the hits (k) found in the cluster in proportion to 

their amplitudes: 

Q,=QA, x.4, -‘. (_ 1- i 
The quantities used in this calculation are already available 
to the QT analysis from the cluster and hit finding stages, 
so that determination of Q, by this method minimises the 
amount of additional computation. This minimisation can 
be important when the required rate of raw data reduction 
is high, but costs some degradation in Qk estimation 
because of the implicit assumption that the pulse shape is 
constant (so that Q, is proportional to A,). This is tolerable 
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Rg. 1 I. Hits identified by the Planar hit finding algorithm in 

FADC output obtained under normal 

Hits 1 and 2 are separated by I .9 mm. 

for the Planar chambers. which do 
by charge division. 

3.24. Hit jnding efficiency 

HI operating condnions. 

not determine position 

The thresholds used in the Planar QT algorithm have 

been tuned on e-p interaction data to optimise the hit 
finding efficiency and noise rejection under normal HI 

operating conditions. The method, which involves statisti- 

cal determination of the number of hits which form aligned 

combinations from charged particles traversing single 
Planar cells, is described in Section 4.5. This hit finding 

efficiency is monitored continuously and is normally 

greater than 95%. Its high value is confirmed by scanning 
of Planar FADC spectra from the same data sample, an 
example of which is shown in Fig. 11, where excellent 

agreement is found between the QT identified hits and the 
leading edges which are evident by eye. 

4. Calibration and monitoring of the drift chambers 

The drift times from the QT analysis must first be 

corrected for timing offsets and then converted into drift 
distances. When combined with the known location of the 
sense wires in the HI coordinate frame, these provide 
preliminary data for use by the pattern recognition and 
track fitting software. Corrections for track inclination to 
the wire plane and time-of-flight are made once approxi- 

mate track parameters have been determined. Section 4.1 
describes aspects of the time-to-distance relation which are 
common to both the Radial and Planar drift chambers. 
Special features of the two different types of drift chamber, 
together with the methods used to calibrate and monitor 
them, are described in Sections 4.2 to 4.5. Section 4.6 
shows how the calibration and monitoring techmques are 
applied in practice. 

4.1. Time-to-distance model 

The following model of the drift cells is used to 

motivate the choice of time-to-distance function. The 

configuration of the drift chambers is depicted schematical- 
ly in Fig. 12. The electric field lines lie in planes 
perpendicular to the sense wire as shown in Fig. l2b. For 

drift distances, s, greater than about 0.5 cm (measured 
perpendicularly to the sense wire in the same z plane) the 
electric field is constant in magnitude and orthogonal to 

both the sense wire and the z direction. Closer to the wire, 
the electric field increases like I/s and turns to point 

radially into the wire. To a good approximation, the 

isochrones are semicircular. It is assumed that the ionisa- 

tion clusters produced nearest to the point where the track 

is tangent to the isochrones arrive first and define the 

leading edge of the pulse. If the track crosses the drift cell 

perpendicularly this point is at the same z as the wire. For 

track reconstruction purposes. the drift coordinate of a 
point on a track is defined as the perpendicular distance 
from the track to the wire at the z of the wire. The drift 
distance is first estimated from the measured drift time 

assuming that the track crosses orthogonally. For inclined 

tracks. a correction to the estimated drift distance must 

therefore be applied: 

8s = d(sec !J’ - 1) (61 

where d, the radius of the isochrones, is approximately 

equal to s,, the distance from the wire at which the 
ionisation begins to drift radially and p is the angle the 

track makes with the plane containing the sense wire and 
the z direction (see Fig. 12b). Close to the wire, d is 

replaced by the distance of closest approach of the track to 
the wire. The correction is made in the final track fit once 
the track inclination angle is known. 

For ionisation drifting towards the sense wire in the 
same z plane as the wire the absolute value of the drift 

velocity remains approximately constant along the drift 
path. The magnetic field is everywhere orthogonal to the 

sense wires and to the electric field. The ionisation drifts 

towards the sense wire at a fixed Lorentz angle, (Y, and 

Fig. 12. The drift path for ionisation produced at the centre of a 
cell (a) and from an inclined track (b). 



then, close to the wire, the angle decreases as the electric 
field increases, as shown in Fig. 12a. The component of the 

drift velocity perpendicular to the wire therefore increases 
as the wire is approached. To an adequate approximation, 
since E is inversely proportional to the drift distance, s, for 
s<s, and B is constant [II], 

tana-IBIIIEI=ps. (7) 

Then, the perpendicular component of the drift velocity is 

given by 

i 

Y, 

V(s) = y, cos a(s) = qm sss, 
(8) 

IV, = constant s > s, 

where V,, the perpendicular component of the velocity at 
the wire, is equal to the magnitude of the drift velocity 
(assumed constant throughout the drift space in this 

model). 
The constant /3 can be evaluated in terms of V,, and V,: 

\lIl’ - 112 
p= “j, .I_ (9) 

I I 

The time required to drift from a distance s to the wire is 

given by: 

I-” ds 

@) = J,, v(s) 

1 
& {psdl + /3’s’ + In(ps +ql + p’s’)} sss, 

II 
s - s 

t(s,)+i 
VI 

s>s, 

(IO) 

This equation cannot be inverted in closed form. but an 
approximation in which the perpendicular component of 

drift velocity (hereafter called drift velocity) increases 

linearly from V, to V, as s decreases from s, to zero yields 
drift distances which differ from it by at most IO pm. Fig. 
I3 shows the drift velocity as a function of s together with 
the linear approximation. Deviations from this model and 
the methods used to determine the parameters are dis- 
cussed in Sections 4.2 and 4.3. Note that, with mean drift 

distances of order 2 cm, the mean drift velocity, (V). must 
be calibrated to better than 0.5% in order to keep sys- 
tematic errors on the reconstructed distances to less than 
100 pm. 

4.2. Calibration of the Planar chambers 

The geometry and staggered wires of the Planar drift 
cells (see Section 2.2) allow for a straightforward approach 
to monitoring and calibration which utilises the known 
dimensions and symmetries of the cells to maximum 
effect. In particular it is possible to form statistical check- 

Increasing drift field Constant drift field 
tan a constant 
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Fig. 13. Drift velocity as a function of drift distance. The curve 
corresponds to the model given by Eq. (8). 

sums which give a direct measure of chamber performance 

and data quality without the need for track reconstruction. 
These techniques permit effective monitoring and cali- 

bration of the chambers as the data accumulate. 

J.Z.1. Time-to-distance function for the Planar chantbers 
The Planar QT algorithm (see Section 3.2) processes the 

FADC information from four adjacent wires (one Planar 

cell) in a single call, returning the time (t) and integrated 
pulse size (Q) for every hit found. These times are then 
transformed to drift distances, s(t) (Section 4.1). 

The electric field in the Planar cells is accurately 
uniform. at -I kV/cm, over 80% of the 28. I mm drift 

range, but rises rapidly in the last 5 mm of drift, closest to 
the sense wire. This causes nonlinearity in s(t), through the 

mechanism described in Section 4. I and Fig. 13. The effect 

of this nonlinearity is clearly visible between t,, and t, in 
the Planar drift time distribution shown in Fig. 14. The 

25 

20 
850 ns .~ 

15 
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Fig. 14. Typical Planar drift time distribution with the four knots 
f, indicated. The approximate velocities on the right hand scale 
are discussed in the text. 



S. Burke et al. I Nucl. Instr. and Meth. in Phys. Res. A 373 (1996) 227-260 231 

origin of the knot at tz is not understood. The small rise 

before t, is due to double counting of hits from tracks 

crossing the cathode plane. 

In practice the time-to-distance relation is parametrised 
in terms of a local velocity which varies linearly with drift 

distance, s, over regions si < s < sk + , , where k labels the 

knots, in a way which corresponds to the structure which is 
visible in the drift time distribution (Fig. 14): 

v(s)=K+-, 
‘kc I 

(Sk+, -s,) 
rk+1 = (V,+, -v,, . 

Defining 

At:’ ’ = drift time from sL+, to sk 

= 

(11) 

(12) 

the integrated drift time, t’, from a point s, <s < sI+, to 

the sense wire is 

1 (s - Sk) 1 
r’(s)=@-t,,)+rL+;In I+----- T,+,TJ (13) 

k 

with (tr -t,,) = c At:_, 
II = I 

which can be inverted to obtain a parametrised analytic 

form for the time-to-distance relation, valid for times in the 

region t,<t<tk+,: 

s(t)=s, +vkTk+, .{exp[F] - I}, (14) 

where t = t’ + t,, is the measured drift time. 
Two sets of four velocities (V~“‘““, k = 0, I, 2, 3 for the 

inner (outer) pair of wires in a cell) and two asymmetry 

parameters are sufficient, with the above linear local 

velocity model, to provide a good description of the drift 
properties of a Planar cell. Typical values are shown in 

Table 3. The asymmetries, which are caused by electro- 

static differences associated with the staggered wires, are 
used to scale the local velocities by (I fa,) depending on 

whether the wire is staggered away from (-) or towards 
(+) the hit [12]. The a, are determined using the C2 
check-sum described in the next Section. 

These local drift velocities have been determined, in the 

Table 3 

Calibrated Planar time-to-distance parameters 

li a, .sy [pm] Vy [pm/m] s;‘“’ [km] VT’ [pm/w] 

0 0.028 0 44.85 0 46.47 

I 0.004 5025 32.87 5025 31.74 

2 0.0 16360 33.06 17080 32.93 

3 0.0 28 100 28.87 28 100 29.12 

first instance, by a direct fit to the drift time distribution on 

the inner and outer wires, with the assumption that the 

source distribution of hits is uniform in drift distance, s; 

g = p = constant (15) 

so that 

dN dh’ ds 
dt = -. - = pV(s) . 

ds dt (16) 

The approximate local velocities which follow from this 

assumption, in km/m, can be read from the right hand 

scale of Fig. 14. The fit uses Eq. (16). with Eqs. (11) and 
(13) in a ,$ minimisation having t,,, VT”‘“’ and s:‘““~ as 

free parameters but with so”‘“’ fixed at zero and sy”‘“’ 

fixed at the cell width (28.1 mm). When sp and sy”’ were 

fitted independently they were found to be the same; 

subsequently they have been constrained to be equal. In 

addition there are four free parameters which are required 
to account for resolution effects at the front and back edges 

of the inner and outer drift time distributions. This gives a 

total of 16 free parameters to fit about 100 data points (two 
plots like Fig. I4 where the smooth curve shows the result 

of such a fit). The values obtained from such fits (includ- 
ing the knot at sl) have been confirmed by using the 

resulting s(r) parametrisation in the track reconstruction to 
check that variations in the V, show the track segment fit 

residuals to be at a minimum and the number of found 

Planar track segments to be at a maximum. 

4.2.2. Calibrution and monitoring 

Fits of the above type are not performed for every run. 

Instead, having determined the V,(N) and mean velocity 

V(N) for run number N, the local velocities for later runs 
are determined by scaling; 

V,(N + m) = V,(N) X 
V(N + m) 

v(N) . 
(17) 

The mean velocities, V, are determined to better than 

20.3% every two hours on average during normal e-p 

running from the width of the drift time distribution 
and the known cell size (cell width/drift time width 

a28.l mm/850 ns = 33 p,m/ns). 
Typical results from run-by-run calibration are shown in 

Fig. 15. The 88 calibrated runs shown there span four days, 
have a mean drift velocity of 32.854km/ns and an rms 
scatter of 0.06 p,m/ns. The smallness of this 0.2% rms 
fluctuation confirms the intrinsic statistical accuracy of the 
calibration method and the excellent stability of the Planar 
chamber operating conditions and gas mixture control 
system [2]. 

A complementary method for monitoring the stability of 
drift velocity, which also provides information on intrinsic 
resolution and data quality, has been developed by making 
use of the 2300 km stagger of the Planar sense wires. 
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Fig. 15. Calibrated mean drift velocities for the Planar chambers. 

With some obvious but approximate assumptions con- 

cerning linearity and symmetry a charged track of momen- 

tum 220MeV/c will produce the following drift times: 

T, = + Id, I 

TZ = +j Id, + 6 sin(p) + 2yAl 

TX = + Id, + 28 sin( 

T, = $ Id, + 3S sin(p) + 2yiil 

(18) 

Here d, is the perpendicular (drift) distance from the track 

to wire 1, 6 is the wire spacing (6 mm), !J’ is the angle of 
the track relative to the plane defined by the wires (Fig. 

12), A is the stagger of the wires (?300 p,rn in the s 
direction), y = ? 1 depending upon the relative sign of A 
and s for that wire and V is the component of drift velocity 

in the s direction. Provided that s has the same sign for all 

four wires, i.e. that the track does not cross between the 
wires, the following check-sums are valid: 

c, = (T2 - T, ) - (T, - TX) = 0 

2fl.y 
(19) 

cZ=~(T,-T,)-$(T,-T,)=V. 

For tracks emerging from the e-p interaction point (on the 
z axis), the probability of crossing between the wires is 
very small (of order 300 pm/3 cm = 1%). so the dis- 

tribution of C, shown in Fig. 16a shows a sharp peak close 
to zero. Fig. 16b shows the distribution of C2 for IC,I < 
24 ns, with the peaks corresponding to y = +I clearly 
visible, demonstrating an ability of the Planar chambers to 
resolve the left-right drift ambiguity. The plots of C, and 
C, are for cells with one and only one hit/wire. 

An estimate of the drift velocity can be obtained from 
the fitted separation of the peaks in the CZ distribution. The 

ratio of the calibrated velocity, determined from the width 

of the drift time distribution, to that extracted by this 

method, is shown in Fig. 17. 
It is clear that the velocity determined from the peak 
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Fig. 16. (a) Check-sum C, (b) Check-sum C2. The fitted curves 

are generalised Breit-Wigner distributions with a smooth back- 

ground [19]. 

separation in the plot of check-sum Cz is significantly 
lower than the true velocity. This is known to be due to a 

small, stagger related, electrostatic asymmetry in the drift 

cell [ 121. which is taken into account when formulating the 

time-to-distance relation through the asymmetry parame- 

56900 57000 57100 57200 57300 

Run Number 

Fig. 17. The ratio of the drift velocity from the width of the drift 

time distribution to that determined from the Cz check-sum versus 

run number. 
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Fig. 18. Mean resolution of Planar chambers from the Cz check- 
sum. 

ters, a,, of Table 3. The constancy of the ratio verifies that 

the above asymmetry does not change with time and gives 
independent confirmation of the drift velocity stability. 

4.2.3. Planur drift measurement precision 

From the fitted widths of the peaks in Fig. 16 an 

estimate of the single hit resolution can be made; typical 
results are shown in Fig. 18. The functional dependence of 
resolution on drift distance can be established by analysing 
the C, distribution from hits in different bands of drift 
distance. These results are shown in Fig. I9 with the best 

fitting parametrisation (s in cm, fr in pm) 

(T* = 165” + s92.3’ + 807’ e-I0 5r (20) 

superimposed. The second term models the effect of 

diffusion with the third term parametrising the effect of 
nonuniform drift properties close to the sense wires. 

4.3. Calibration of the Radial drift chambers 

The wedge-shaped geometry of the Radial drift cell 
means that the drift time distribution cannot be directly 

Dlin Distance (cm) 

Fig. 19. Single hit resolution as a function of drift distance in the 

Planar chambers. The smooth curve is given by Eq. (20). 
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Fig. 20. Typical drift time distribution in the Radial chambers. 

used to obtain a measure of the average drift velocity as is 

the case in the Planar chambers. A typical drift time 

distribution is shown in Fig. 20. The leading edge of the 

distribution is well-defined and can be used to determine 
t,,. The overall shape however is complex and cannot be 

simply mapped into drift velocities. It arises from the 
wedge shape of ‘the drift cells and nonuniform radial 
distribution of the hits. In addition, every sense wire 

penetrates the region of high hit density at small radius so 
that the probability of hit loss from two-track overlap is 
high and depends on the drift distance. (Hits at small drift 

distances are more likely to be lost, whatever their radii, 
than hits at large radii and large drift distance.) The density 

and distribution of hits in radius varies with beam and 
trigger conditions so that a fixed shape is not expected for 

the drift time distribution, even if the drift velocities 

remain constant. 

4.3. I. Time-to-distance function for the Radial chambers 

The time to distance function in the Radial chambers is 
determined by using tracks reconstructed using the Planar 

chambers after calibration to predict the true drift distances 
of hits in the Radials. These distances can then be 

compared directly with the measured drift times (after 
correction for an overall timing offset and propagation 
time along the sense wires and signal cables). Fig. 21 

shows the drift time, scaled by a nominal drift velocity, as 
a function of predicted drift distance obtained by this 

method. 

The perpendicular component of the drift velocity is, to 
a good approximation, independent of both drift distance 
and radius in the region 20.5 cm from the sense wires; it 
increases close to the wire as expected from the model 
discussed in Section 4. I which assumes that the magnitude 
of the drift velocity remains constant. This approximation 
may fail within 2 mm from the wire where the electrostatic 
field is large and the magnitude of the velocity may change 
significantly. The same parametrisation as that used for the 
planar chambers (Eq. (14)) is adopted, but only three knots 
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Table 4 

Typical calibrated time-to-distance parameters for the Radial drift chambers showing (a) overall parameters and (b) wire-plane dependent 

velocity correction factors 

k ai .yi bml V, [p,m/ns] 

(a) 
0 0.0345 0 61.63 

1 0.0 4950 37.51 

2 0.0 m 37.5 1 

Cb) 

Wire 0 1 2 3 4 5 6 7 8 9 IO II 
Factor 0.989 0.999 1.002 1.004 1.004 1.004 1.004 1.004 I .004 1.004 I.004 0.985 

and three velocity parameters are needed (Table 4(a)). Note 
that the last knot at s2 is purely formal: the velocity is 

assumed to be constant for drift distances greater than s,. 

The appropriate limiting forms of Eqs. (1 l)-( 14) for 

r,_ -+m are used to compute the drift distance in this 

region. 
Data like those in Fig. 21 are obtained for each run 

containing a reasonable number of events (-10 000) and 

are used to determine the velocity V, . Independent straight 
line fits are made for positive and negative drifts in the 
range 0.6 5 IsI 5 3.5 cm. The velocity is calculated from 
the weighted mean of the two slopes. A precision of about 

0.2% is obtained. The velocity V, and location of the knot 

point S, can also be deduced from the same data. To a 

good approximation, these are found to scale with V, and a 
separate run-by-run determination is not necessary. 

The electrostatic field configuration is not identical for 

all the wires in the Radial chambers. Consequently the 
average drift velocities near the front of the drift chamber 

are significantly lower than in the middle. These inhomo- 
geneities are treated by applying scaling factors to the 
velocities on each of the twelve wire planes (Table 4(b)). 

As is the case for the Planar chambers, an asymmetry 
arising from the wire stagger is seen and is corrected for 

-4 -2 0 2 4 
Drift Distance (cm) 

Fig. 21. Scaled drift time versus predicted drift distance. The 
insert shows the region at short drift distances. 

by applying a different scale factor to the velocities for hits 

on wires staggered towards or away from the track. This 

correction can only be applied once the sign of the drift 

coordinate has been resolved by the reconstruction soft- 
ware. These characteristics, including the wire-dependence 

of the drift velocities, have been qualitatively confirmed by 
an electrostatic simulation of the drift chambers using the 

GARFIELD [ I3 ] program. 

4.3.2. Monitoring of the drift velocities in the Radial 
chambers 

The above technique can be used as a monitor of the 
drift velocities only after track reconstruction has taken 

place. A fast monitor of changes in parameters is desirable 
in order to avoid mis-reconstruction of the tracks and the 

need to reprocess the data. To this end, some of the 

techniques already described for the Planar chambers are 

exploited. 
Although no drift velocity information can be extracted 

from the drift time distribution alone, by making use of the 
charge division measurement it is possible to make drift 
time distributions in slices of radius, for which the drift 

cells have approximately constant width and so are more 
akin to those in the Planars. This allows the determination 
of the maximum drift time as a function of radius. Since 

the cell is wedge-shaped this time should increase linearly 
with radius given that the drift velocity is constant in the 

relevant region away from the sense wire. The slope is thus 

a direct measure of the drift velocity in the constant drift 
field region. A fit is performed over a restricted range, 
30 cm <R < 60 cm, in order to avoid end-effect distor- 

tions. Fig. 22 shows the location of the maximum drift 
time as a function of the radius, for two different gas 
mixtures, with the linear fits superimposed. The method is 
vulnerable to the imprecision of the radius measurement 
which smears the back edge of the drift time distributions. 
In addition, the imprecision itself depends on the hit 
density and so beam and trigger conditions can affect the 
result. Also, as a result of the Lorentz angle, the linear 
relationship depends on which side of the wire plane the 
hit originated and this cannot be determined at the single 
hit level. Consequently this method gives a drift velocity 
with an uncertainty of about 1%. 
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measured using test-pulses, and resistances and resistivities 

were measured as part of a full chamber survey before 

installation. The measured relationship between the charge 

division variable (Q’ - Q-)/(Q + + Q -) and radius is 
linear. 

4.3.4. Precision of the drift and radius measwements 
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Estimates of the single hit drift resolution and its 
dependence on drift distance are obtained from an analysis 

of C, check-sum distributions as described for the Planar 

chambers in the previous Section. Using the same func- 

tional form to parametrise the resolution gives (Fig. 24) 

IT’ = I .9’ + ~127.1’ + 317’e-’ ‘Is , (21) 
Fig. 22. Maximum drift time versus radius for two gas mixtures. 

giving a mean resolution = 180 p.m. 

A Radial cell has 12 wires in depth; these can be taken 

in groups of four and the same check-sums as for the 

Planars can be calculated and monitored. The Cl check- 
sum gives another measure of the drift velocity. The 

relationship between this velocity and the average drift 
velocity in the cell differs from that in the Planars because 

of the differing disposition of field wires. The run to run 

variation in this drift velocity is about 0.5% during stable 

periods of running and the method is less susceptible than 

the drift time versus radius method to beam conditions. 
Fig. 23 shows the drift velocity measurements obtained 

for a series of data runs by the above methods. The ratios 
of the different velocity parameters remain constant from 

run to run so that the fast monitoring methods can be used 
to effect a rapid recalibration in the event of a significant 

change in operating conditions (see Section 4.6). 

The method of track projection from the Planar cham- 
bers is used to check the radial coordinate determination. 

The best resolution of about 1.5 cm is achieved only for 
the larger pulses. The average resolution for isolated hits is 

3-4 cm. More seriously, because of the high hit density, a 

substantial fraction of hits overlap. The radius measure- 
ment may be significantly degraded for such hits. 

1.1. Determination of t,, 

4.3.3. Culibration of the charge division measurement 

Planar-based tracks are also used to calibrate the de- 

termination of the radial coordinates of the hits by charge 
division. The charge division measurement is not sensitive 

to the absolute charges, so frequent run-dependent cali- 

brations are not needed for this purpose. The relative gains 

of the preamplifiers at the two ends of the wire-pair are 

Before application of the time-to-distance functions, 
various corrections are applied to the times determined by 
the QT analysis. An average offset from the trigger time, 
t,. is determined for each data run by locating the leading 

edge of the drift time distribution of the hits. This is done 
by numerical differentiation of the drift time distribution to 

obtain a positive peak corresponding to the rising front 
edge. The fitted time of this peak is used to define the 

timing offset to an accuracy of -0.5 ns for a typical run. 

Fig. 25 shows the t, values, as determined by this 

method, over a two month period in 1993. Discontinuous 

changes. due to known hardware modifications, are clearly 

30 - 
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Fig. 23. Drift velocity measurements for a series of runs from the Fig. 24. Single hit resolution as a function of drift distance in the 
three methods. Radial chambers. 
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Fig. 25. I, values from the analysis of Radial and Planar drift 

times versus run number. The solid lines join the measurements. 

The Radial t, has been increased by 40 ns for clarity. 

visible. Fluctuations at the nanosecond level, due to 

variations in the mean position of the e-p interaction 

point, are closely followed by this method. 

Relative timing offsets between the sense wires are 
evaluated using test-pulses and only require occasional 

updating when the hardware is changed. Corrections for 
the time of flight from the event vertex to the hit position 
are made in the fmal fit. Timing corrections are also made 

for propagation time along the sense wire. In the case of 
the Radial drift chambers, the correction takes into account 

the weighting procedure described in Eq. ( I ) and uses the 

radius determined by charge division. For the Planar 
chambers the correction is made during the final fit 

(Section 7). 

3.5. Monitoring of the hit finding efficiency 

A measure of the hit finding efficiency can be obtained 

by using a modified form of the C, check-sum analysis 
(Section 4.2.1). Groups of four adjacent wires are selected 
which have exactly one hit found on each of the first and 
last sense wires. If a single hit is present on either or both 
of the central pair of wires in the group, at least one of the 

check-sums shown in Table 5 can be formed by using 
three of the available hit times. In the Table the efficiency 

of an inner (outer) wire, from the group of four, is denoted 

by ~8, (E,,,). 
The resulting distributions of the check-sum values have 

Table 5 

Efficiency check-sums usiw three hits 

Form Wires hit Probability 

a clear double peak structure similar to that obtained from 

C,. By fitting the area of the double peaks for each of the 
check-sums, background is excluded and an estimate of the 

relative probability for each of the four classes is obtained. 

These areas can then be combined to given an estimate of 
the efficiency of the central pair of sense wires: 

Area (C, + C,) 4, 
=- 

Area(C,+C,) (l-c,,)’ 
(22) 

thus providing a continuous monitor of the drift chamber 
efficiency. Fig. 26 shows the efficiency of the inner wires 
in the Planar and Radial drift chambers, obtained by the 
above method. for all 1993 and 1994 e-p runs (to 6/9/ 

94). The decreasing trend, which is visible in both 

chambers throughout 1993 running, is due to leakage of Nz 
into the system (about 1% by volume at run 53 000 to 

about 5% by volume at run 65 000). This fault was 

corrected for 1994 runs. 
For the Planar chambers the figure shows that the inner 

wire efficiency is approximately 98% for the bulk of the 

1994 data. The geometry of the cells is such that the pulse 
size is greater on the outer pair of wires thus giving a 
higher efficiency, leading to a mean over all four wires 

greater than 98%. The sharp drop in efficiency close to run 
85000 was caused by saturation of a gas purifier. 

The efficiencies for the Radial chambers are averaged 

over three groups of four wires taken from the I2 wires in 
a drift volume. Nonuniformity in the electrostatics, par- 

ticularly at the front of the drift chamber, leads to a 
lowering of efficiency on the front wires. The sharp 

changes in efficiency close to run 65 000 were due to a 

change in sense wire operating voltage, followed by a test 

period with a xenon gas mixture. 

The check-sum method uses isolated hits: however 

additional inefficiencies arise with multiple hits because of 
overlapping. An estimate of the relative efficiencies of the 

0.6’ . 1 

Fig. 26. Inner wire hit efficiencies for the Planar (a) and Radial 

(b) chambers. 
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different wire planes can be obtained by making a simple 

ratio of the number of hits found per wire relative to the 

wire with the most hits. This method gives an efficiency of 

100% for the wire with most hits. For the planars the two 
methods are in reasonable agreement as the basic unit is a 
four wire group. For the radials there are 12 wires in a cell 
and the absolute measurement is performed independently 

for the front, middle and back four wires. The relative 
efficiencies have to be scaled by the absolute efficiency to 
arrive at efficiencies for all 12 wires. These wire efficien- 

cies for 1993 and 1994 data are given in Table 6 and 

provide the input to the detector simulation (see Section 

9.1). 

4.6. Culibration in practice 

The calibration principles described above have been 
applied according to the scheme outlined in Fig. 27. 

HI event data are transferred from the FTD front-end 
system into the Level 4 Filter Farm where the FADC data 

are processed by the QT algorithms (Section 3) to produce 
banks of Radial and Planar hits. 

These QT banks are transmitted directly to the FTD 
on-line processing task running on the L4 farm, which 

generates the on-line histograms (drift time distributions, 

check-sum distributions) which are monitored in real time. 
At the end of each run the histograms are transferred to the 

DESY IBM mainframe where they are analysed to extract 

calibrated parameters which are accumulated in a history 
file. The history is inspected frequently by physicists who 

update the Hl data base with new calibration constants 
whenever a significant change is observed. This procedure 
is sufficient because of the stability of the FTD operating 
conditions (e.g. Section 4.2, Fig. 15). 

Fig. 27. Monitoring and calibration of the Hl Forward Tracker 

Chambers. 

determination than the result based on a single run. The 

value obtained from the C, check-sum is still used as an 
important monitor and to detect significant discontinuous 

changes. 

Calibration constants for the Planar chambers are entire- 
ly determined in the above analysis of on-line histograms. 

In the case of the Radial chambers, where a direct on-line 

measure of drift velocity is more difficult and less accurate, 

the precision drift velocity obtained by projection of Planar 

track segments (Section 4.3.1; Fig. 21) is preferred even 
though the value for the current run is not immediately 

available for reconstruction purposes. In practice, this 

velocity varies sufficiently slowly that a weighted average 
taken from previous runs is in any case a more reliable 

Constants from the Hl data-base and the QT banks from 
the L4 farm are passed to the Hl event reconstruction 
program, running on a Silicon Graphics (SGI) cluster. 
Output from this is analysed to derive updated drift 

velocities for the Radial chambers. 

5. Line segment finding 

Following the QT analysis of the FTD raw data and 

conversion of the resultant drift times to drift distances, the 

pattern recognition for the FTD starts by finding line 
segments independently in the Planar and Radial cham- 

Table 6 
Wire-by-wire single-hit efficiencies as used in the Monte Carlo simulation, derived from 1993 and 1994 data. The outer pair of Planar wires 

are assumed 100% efficient 

Wire 

0 I 2 3 4 5 6 7 8 9 10 II 

Radial 93 0.11 0.47 0.65 0.72 0.72 0.74 0.74 0.74 0.7 1 0.73 0.70 0.69 
Radial 94 0.24 0.7 I 0.84 0.87 0.85 0.86 0.87 0.86 0.88 0.88 0.88 0.83 
Planar 93 1.00 0.89 0.89 1.00 
Planar 94 1.00 0.98 0.98 1.00 
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bers. Due to the different geometries of the chambers the 
procedures used are independent and are described separ- 
ately in the two following Sections. 

5.1. Line segment finding in the Planar chambers 

5.1. I. Geometry 
A charged track passing through an orientation will 

deposit charge, usually in one cell. In the good approxi- 
mation that the path of the track through a cell is straight, 

the information from the drift distances to the four sense 

wires can be expressed as a plane (Fig. 28). This is also 
found to be the computationally most efficient way to treat 
this information. The Planar chambers are read out at only 
one end of the wires, so there is no knowledge of track 
position along the direction of the wire. 

A track passing through a module is described by a 

plane from each of the X, U, and V orientations (Fig. 4). 

Clearly these three planes must intersect along the track 
within tolerances (Fig. 29). 

With only one track through a module, and perfect 

measurement, pattern recognition would be trivial and 
completely defined by the observations above. However, in 

general, there are high track multiplicities in these cham- 

bers, and the main task of pattern recognition is to cope 
with the very high rates of hodoscope ambiguity this 
causes. There are two distinct stages to Planar pattern 
recognition: firstly clusters of three or four digitisations are 
found in individual orientations and then full line segments 

are constructed from these clusters for each module. 

Plane defined by Planar wires 

Plane defined by track in cell 

Fig. 28. The plane defined by a track passing through a cell (Fig. 
5). (Y is the angle between wire plane and track plane. s,. s?, s,, s4 

are the drift distances. 

s from U wires 

nsitlvs volume 
s Planar module 

lncoml 

_ Planeirom V wires 
Plane from X wires 

Fig. 29. Perspective view showing planes in which the track lies, 

as determined by the three orientations; their intersection gives the 

trajectory through the sensitive volume of a Planar module. 

5.1.2. Stage 1: Finding clusters in an orientation 
The distance between the first and last wires in an 

orientation is 1.8 cm. To a good approximation even 

particles of a few tens of MeV leave straight tracks on this 

scale. The first step is to find as many candidates for tracks 
within each orientation as possible. These candidates are 

referred to as clusters and define a plane as described 
above. Ionisation left by a particle gives two possible 
positions as there is no information about the direction 
from which it arrived at the wire. The false positions 

created by choosing the wrong drift sign are called 

reflections. 
A number of searches is made. Data that have been used 

to form clusters are removed each time. On the first pass 

each hit. and its reflection, on the first wire plane in : is 

paired in turn with each hit on the last wire plane. A search 
is made on the two intermediate wire planes for any hits 

within four standard deviations of a straight line drawn 
between each pair. Clusters which have large angles to the 
beam direction, or position and angle correlations which 
are inconsistent with being a track from the e-p intersec- 
tion point, are excluded. An example of finding clusters in 

this way is shown in Fig. 30. 
In this example a small part of an orientation is shown 

with three tracks (A, B, C). The resulting digitisations are 
shown together with their reflections. The five clusters 
found using the above procedure are labelled. Possible 
clusters which failed to find hits on the inner wire planes 
are shown as dashed lines. Clusters which failed the angle 
cuts are not shown for reasons of clarity. The shaded area 
shows a case of two candidates within tolerance on the 
second plane. Both sets are recorded as clusters in this 
case. Even in this simple example false clusters have been 
recorded, and a method for removing them is required. 

The set of clusters is now reduced until a subset is found 
that do not share any digitisations. The aim is to remove as 
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_ selected cluster 

Fig. 30. View along the wires of part of an orientation showing 

the cluster finding techniques, In the expansion of the shaded 

region the bars indicate inner wire plane search regions, Candidate 

clusters are shown as lines joining the first and last digitisations. 

Clusters 3 and 4 are recorded as two separate clusters, one with 

digitisation “a” and the other with “b” on the second plane. 

few clusters as possible to achieve this. There is no unique 

method, but the one described below has been found to 

work rapidly and with high accuracy and efficiency. It is 
useful to have a pictorial representation of the set of 

clusters as a network of nodes and arcs. Each node 

represents a cluster and an arc joins any two nodes that 

have at least one digitisation in common (see Fig. 31). 
The node (cluster) with the largest number of con- 

nections is removed from the set. This is repeated until 
there are none with more than two connections. Apart from 
isolated nodes the only possible network topologies re- 
maining are pairs of linked nodes or longer strings, and 
closed loops (Fig. 32). All clusters in loops are fitted to a 

straight line, as are clusters in the middle of strings, and 
the worst fitting candidate is removed. Clusters forming 

pairs are both fitted and the worse one removed. This 

algorithm avoids the need to perform a fit on all but a few 

of the clusters thus giving speed where the amounts of data 
are largest. 

Fig. 31. The elements of a network description of the set of 
clusters and their relationships. Cluster “b” shares digitisations 
with clusters “a” and “c”, but there is no sharing between “a” 
and “c”. 

h&tad 
,:,::::j:j : :. 

. . . . . . . . . . . 
~ ~ ‘OoP Q : ::.. 

string 

Fig. 32. The possible network topologies after nodes with more 

than two connections are removed. 

This procedure is shown applied to the simple example 

presented earlier (Fig. 33). In this case the method takes 
two steps to produce a disconnected subset of clusters. 

Those chosen are the ones that relate to the tracks shown 

in Fig. 30. 

Having found a disconnected subset of clusters in this 
way, another search is made. Data not already used in 

clusters forming the disconnected subset are searched 

again with more relaxed tolerances and with no cut 
requiring the clusters to point to the e-p interaction point. 

The method is repeated as before and the disconnected 
subset of clusters which it produces is added to the 
previous subset. 

Because of inefficiencies, clusters may not have data on 

all four wires of the orientation. Therefore searches are 
made for three-hit clusters in the following order: 

i) Clusters with one of the middle wire planes missing, 
ii) Clusters with the first wire plane missing, 

iii) Clusters with the last wire plane missing. 

The tolerances used for clusters with three digitisations 
are always tighter than with four as the potential for 

random association is much greater. At each stage a second 
search is made with more relaxed tolerances; a new 

disconnected subset of clusters is formed and added to the 
existing subset. Any data remaining unused are fed to the 
next level. 

It is found that approximately 70% of digitisations are 

used in the subset of disconnected clusters after a full 

search. The remaining 30% are due to track related noise 
arising, for example, from delta ray production. 

51.3. Stage 2: Finding segments in a module 

The input to this second and final stage of Planar pattern 
recognition is the disconnected set of clusters from the 

first. As explained above each cluster defines a plane (Fig, 
28). If three of these planes, one from each orientation 
within a module, are from the same track they will share a 
common intersection within measurement tolerances (Fig. 
29). To look for these signals the intersections between all 
pairs of planes are calculated. Any three such intersections 
which lie within a given distance of each other at the front 
and rear faces of the module indicate a line segment (Fig. 
34). This distance cut (the segment cut) is currently 7 mm 
(see below). 

Because of the large number of hodoscope ambiguities 
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Fig. 33. An example of finding the disconnected subset of clusters for the case shown in Fig. 30. In step (a) the most highly connecrtd node 

is removed, in step (b) the connected pair 3/4 is fitted and the worse removed. 

even small numbers of tracks produce a large number of 

false line segments (Fig. 37 [I]). Most of these can be 
removed by selecting the subset of line segments that does 

not share digitisations. 
The method chosen to achieve this can again be 

illustrated using a network of nodes and arcs. As before the 

method is not unique but has been found. from Monte 

Carlo studies, to select an almost complete set of correct 
line segments with few false segments for typical multip- 

licities (less than 20). 

The digitisations belonging to each line segment are 

fitted to a straight line and the probability calculated. Each 

node (line segment) is given a weight which is the sum of 
the probabilities of all nodes connected to it (not including 
itself). The node with the highest number of connections is 
then removed. If this node is not unique then, of the nodes 

with the highest number of connections, the one with the 
highest weight is removed. This procedure is repeated until 
a disconnected set of nodes remains (i.e. no line segments 

share digitisations). 

A simple example of this procedure is shown in Fig. 35. 
Initially there are nine connected nodes with fit prob- 

abilities and weights as shown in Fig. 35 (i). Nodes 4 and 

6 both have five connections, but 6 has the highest weight 
(3.26) and is therefore removed (Fig. 35 (ii)). The node 

Distances testa 

Fig. 34. Three intersections between pairs of planes. If all the 
distances represented by dashed lines are less than 7 mm then the 

three clusters/planes producing these intersections are selected as 

a line segment. 

weights and connections must now be recalculated. Node 4 
still has the highest number of connections and is now 
removed (Fig. 35 (iii)), followed by node 8 (Fig. 35 (iv)). 
Finally node 1 is removed, as it has the higher weight, and 
a disconnected set of segments is found. 

This method used for segments is more elegant than that 

used for clusters and is possible because the smaller 
number of segments enables the algorithm to be more 

computationally intensive. 

5.2. Performance of the Planar pattern recognition 

The effectiveness of the method described was measured 
using a Monte Carlo simulation. Muon tracks were gener- 
ated with 100% digitising efficiency which evenly popu- 

lated the mD in angle and with a flat momentum 
distribution between 0.5 and 50 GeVlc. A two-track res- 
olution of 2 mm was assumed. The efficiency for finding 
good clusters is shown as a function of the number of 

tracks through the RD (Fig. 36). The efficiency is above 
95% even for 40 tracks (Fig. 36a); the number of losses 

and mistakes is small (Fig. 36b). The method for finding 

clusters will construct essentially all those which survive 
the intrinsic resolution for two tracks; however, many false 

ones are also created. This plot shows that it is possible to 
regain the correct sample by selecting a disconnected 

subset as described above. 
The percentages of good segments in the total popula- 

tion of all found segments (a) and separately in the 
disconnected set (b) are shown in Fig. 37 [I] using a 
segment cut of 3 mm (see Fig. 34). A good segment is 
defined here as one which has at least 9 out of a potential 
12 hits from the same Monte Carlo (genuine) track. This 
sample, however, predominantly consists of segments 
formed with 12 hits from the same track. The fraction of 
all segments formed which are good falls to 50% for 15 
tracks and 20% for 40, but the proportion of good 
segments in the chosen disconnected subset stays at almost 
100% for 20 tracks. By choosing a disconnected subset of 
the segments some of the good segments found are then 
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Fig. 35. The sequence (i) to (iv) shows how a disconnected set of line segments is obtained. 

excluded, and this percentage is shown by the histogram 

(c). It is noted that this percentage matches very closely the 
percentage of false segments in the subset ((b) + (c) = 

100%). This shows that the disconnected subset contains 
approximately the true number of segments. Fig. 37 [II] 

shows the efficiency to find a genuine segment in the 
disconnected subset as a function of track multiplicity (a): 

also shown is the contamination (b). The subsequent 
analysis uses only segments in the disconnected subset. 

In real data, because of problems beyond the intrinsic 
digitisation resolution. a segment cut of 7 mm is currently 

Number of Tracks in Forward Tracker 

Fig. 36. Planar code performance as a function of track multiplici- 

ty: (a) 4.hit clusters formed with no mistakes and (b) 4-hit clusters 

with one mistake or 3-hit clusters with no mistakes. 

required, and the efficiencies for this value are shown in 

Fig. 37 [III] and [IV]. If the knowledge and the functioning 
of the chambers and associated electronics were perfect 

and given an intrinsic point resolution of -200 km, a cut 

of less than 3 mm could be used. It can be seen that going 

to the higher value cut causes a significant degradation. 
For the majority of the data the probability of losing 

more than one hit per cluster is very small (see Table 6). 
However in a non-negligible number of cases there is a 

loss of more than one digitisation or even the correlated 
loss of a whole cluster (see Section 9.1). An extension to 

the segment finding method described above is therefore 
being developed. Segments are constructed from any 

unused data using two clusters confirmed by only one or 
two digitisations in the remaining orientation. A discon- 

nected set of these is formed and added to the existing set. 

Finally, from any remaining data, segments are formed 

from two clusters alone and another disconnected set is 
added to the above. 

5.3. Line segment jinding in the Rudial chambers 

The procedure that has been adopted is to search for 
straight line segments in drift based on triplets of adjacent 
points. Line segment finding is carried out wedge by 
wedge. Within a wedge all triplets of digitisations are 
selected that satisfy the criterion 

It@, +d,)-d,l<P, 1 (23) 
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Fig. 37. Planar code performance as a function of track multiplicity: [I] (a) percentage of all segments which are good, (b) percentage of 

segments in the disconnected set which are good and Cc) percentage of good segments lost by choosing the disconnected set. [II] (a) 

percentage of genuine track segments found in the disconnected set and (b) percentage of segments which are not good (see text). [III] and 

[IV] are the same as [I] and [II] but with a 7 mm rather than a 3 mm segment cut. 

where d,, d,, d, are signed distances to the wire plane and 
P, is a parameter (approximately I mm). 

For the majority of triplets, this resolves the left-right 
ambiguity of the three points and gives the sign of the 
drift. The next step is to join the triplets. This is done if 

triplets have points in common with the same drift sign, 
and the resultant group of hits lies within a certain 
tolerance of a straight line joining the first and last points 
of the group. If triplets are separated by one missing 
digitisation, they may also be associated if they satisfy this 
straight line criterion. The associated triplets are then fitted 
to a straight line. The parameters of this fit are used to 
project along the wedge and associate isolated digitisations 

with the joined triplets. At this point there is a set of 

potential line segments of which the best is selected. either 
as that line segment with the maximum number of points 
or, if the two longest segments have the same number of 
points, that with the best x2 to a straight line. The points 
making up the line segment are marked used, the points 
are recorded and the program returns to re-examine 
remaining points in the wedge or transfers to the next 
wedge if insufficient digitisations remain to form a line 
segment. 

The procedure described above finds points belonging to 
a track segment provided that it lies entirely within one 
Radial wedge. In practice, this may not be true. Since 
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tracks are, to a good approximation, straight lines in 4-z 

line segments can be extrapolated in 4 into nearby wedges 

to pick up associated digitisations. 

6. Line segment linking 

6. I. The track model 

The line segments forming a track lie on a helix. A helix 

fit could be used to check if a set of line segments is 

consistent with belonging to a track, but this would be 
prohibitively expensive in computer time. Consequently an 
approximate track model is used to represent a helix and 
this track model is used to link line segments and to verify 

that the line segments are consistent with lying on a helix. 

With the definitions: 

R=((x-x‘,)-+(v~v,)~)“’ (25) 

where x, y are the coordinates of a point on a track, and 

with 0 as the polar angle of the track with respect to the 

z-axis, the helical trajectory of a particle, momentum P. 
charge Q, passing through the known point xz,, y,,, I,., is 

given by 

4= 4’: + $,, 

R(z) = 
tan(o) sin( J’(z - z,,)) 

*I 
&J 

(26) 

(27) 

where $’ = (KPcos(0)))‘, K = -2/B&, B is the mag- 
netic field (along z-axis) and c is the velocity of light. 

For tracks that have originated close to the z-axis (x, = 

y,, = 0), e.g. tracks from the primary vertex, it follows 
from Eqs. (26) and (27) that a good track model is 

4(z) = 4’z + 4,,, (28) 

irrespective of momentum, and provided that 4’ is small 

(i.e. high momentum) then 

R(z) = R’z + R,, (29) 

where tan(4) = v/x and R = {.Y’ + y’}“‘. Thus the helix is 
approximated by straight lines in 4-z and R-z. For off- 

axis tracks, the 4-z relation is well approximated by a 

parabola; the R-z relation becomes parabolic both for 
off-axis tracks and for low momenta. These representations 
allow the Planar and Radial chambers to be treated in an 
identical manner. 

The coordinate W (Fig. 38) is given by W = y cos(a) - 
x sin(a), where (Y is the azimuthal angle of the Planar or 
Radial wire. If a track model has been defined in 4-z and 
ff-;, the coordinate, W(z), at a given z is given by 

)X 

Fig. 38. The coordinate W measured by sense wires at an angle Q. 

W(z) = R(i) sin( &;) - a) + y,. COS((Y) ~ xy sin(a) (30) 

Thus a ,$ evaluated in drift can be used to determine 
whether the track model is consistent with the measured 

drifts and hence verify that the line segments are correctly 

linked. Note that while Eqs. (28) and (29) are adequate 

representations for a track through the Radial chambers 

(due to the small values of 4 - (Y), it is essential to use Eq. 
(27) or a parabolic relation in R-2 if Eq. (30) is used for 

the Planar chambers. 
There are four steps in the linking of segments to form 

tracks: firstly, the line segments found in the Planar 

chambers are joined to form potential tracks and these 
tracks are in turn linked to Radial line segments. Secondly, 

and independently. Radial segments are linked to form 
tracks that are in turn linked to Planar line segments. Due 

to chamber inefficiencies and two-track resolution neither 

procedure finds all tracks, so in a third step the tracks 

found in the first two steps are compared and the best 
selected. In a final step unlinked Planar segments are 

joined to unlinked Radial segments where possible. The 

following three Sections describe these procedures in 

detail. 

6.2. Track jinding using the Planar line segments 

The Planar line segments are fitted to straight lines in 
X-,: and y-z. These parameterisations are readily con- 

verted to 4 and R so that the approximate helix representa- 
tions of Section 6.1 can be used to verify the linkage of 

Planar segments. 
The first operation is to join the Planar line segments to 

form tracks. This is done pair-wise by projecting the 
segments to a plane midway between them. For high 

momentum tracks the pitch of the track helix is much 
greater than the separation of the planar modules, so these 
segment projections to the midplane have approximately 
the same X, ?; (within 1 mm for tracks of momentum 
greater than 0.5 GeV/c). Line segments are linked to form 
a track if D =(.u, -x2)’ + (JJ, -yz)’ CD,,,,,, where-r,, _v, 
(x2, vr) are the coordinates of the projections of line 
segments l(2) and D,,,_ is a parameter presently set to 
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Fig. 39. The distribution of the parameter D used to link Planar 
line segments, (a) linking O-1, (b) linking l-2 for three-module 
tracks. 

5 cm’. The Planar line segments are sufficiently well 

defined that it is clear from histograms of D (see Fig. 39) 

that little random linkage occurs (a few percent only). In 

the linking an hierarchical approach is followed; the 

linking procedure is applied first to form three-module 

tracks, then to form two-module tracks from those seg- 
ments that do not form three-module tracks. For the two- 
module tracks adjacent modules are linked first. A x’ in 

drift is determined based on parabolae in 4-z. R-z and 

Eq. (30) for three-module tracks, and on Eqs. (24), (25), 
(26), (29) and (30) for two-module tracks. These ,$ are 
used to reject bad links and to select the best links if 

ambiguities exist. 
Following the linking of the Planar segments, the track 

candidates are parametrised by fitting the segments to 

straight lines in 4-z and R-z, so defining approximate 

helices. Having parametrised the Planar tracks in this 

manner it is possible to associate Radial line segments with 
the Planar tracks. This is done in two steps. Firstly, the 
mean Radial drift is compared with that predicted from the 

Planar track using 

W = R(z) sin(&z) - cu) , (31) 

with R and 4 from straight line fits to the Planars. 
Secondly, the slope of the Radial line segment, dW/dz, is 

compared to that expected from Eq. (31). If the Radial 
segment is within some tolerance of the prediction it is 

associated with the Planar track. The distribution of 
measured drift minus predicted drift for associated Radial 

line segments is shown in Fig. 40, from which it can be 
seen that there is little evidence for misassociation. 

6.3. Track jnding using the Radial line segments 

The digitisations associated with the Radial based line 
segments are first converted to C#J using 

C$ = tan~‘(Wl8) + 0, (32) 

where Z is the mean radius of the digitisations weighted 
by the error in R estimated from the magnitude of the 

oc 
-1 -0.5 0 0.5 1 
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Fig. 40. The distribution of predicted drift minus measured drift. 

A drift. for Radial line segments associated with Planar based 

tracks. 

integrated charge. Note that the error in 4 is dominated by 

that in 2. A straight line fit in 4-z is made for each 

segment. 

Firstly an attempt is made to make three-module links. 
Potential candidates to form a track are required to lie in a 

straight line in R-z to a tolerance of about IO cm. Since in 
4-2 the line segments lie either on a straight line or a 
parabola, the line segments are projected in 4-2 to a plane 

midway between adjacent modules and the projected 4-z 
values are required to agree within about 0.05 radian. This 

value is required to take account of bad radius measure- 

ments in regions of high track density. Fig. 41 shows the 

difference in Q, at midplane. A clear peak is evident, 

demonstrating segment linking with a low level of mis- 

association, especially for three-module tracks (Fig. 41 b). 
A final check is that the line segments lie in an approxi- 

mate straight line in 4-z. These potential three-module 
tracks are next subjected to more stringent tests. A 
weighted least squares straight line fit in R-z is made to all 

points forming the track. For each digitisation an improved 
value of C$ is determined using R from this fit. A parabola 

in 4-z together with the fit in R-z is used in Eq. (30) 
(with x” = y,, = 0) to determine a xz for the track. A check 

is also made that the slope of the line segment, dW/d:. 

agrees with that from Eq. (30); this verifies that the 
momentum from each line segment agrees with that from 
the overall track model. Tracks are rejected if the x’ is too 

large or if dW/dz differs from that predicted by more than 
some empirically determined tolerance. At this stage 
several line segments could be shared amongst different 
tracks. Tracks are compared on the basis of x2 and, if two 
share the same line segment, that with the lowest xz is 
retained. After this selection, line segments that have 
formed three-module tracks are marked used and the 
program goes on to search for two-module tracks in the 
unused line segments. 

In this second stage a search is made for two-module 
tracks in the sequence O-l, l-2, O-2. Line segments are 
marked used after each level of two-module pattern 
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Fig. 41. Difference in 4, A4, at the midplane between (a) Radials 0 and 1, and (b) Radials 1 and 2 for three-module tracks. 
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recognition. The criteria for deciding what is a good track 

candidate follow closely the procedure for three-module 
tracks except that there are no initial checks for straight 

lines in +-z, R-z; the only requirement is that the 

projected 4s agree at the midplane within tolerance. A 

final ,$ is determined using Eqs. (24)-(26). (29) and (30) 
with .xy, y, being the first point on the track. Also dW/dz is 

compared with the expectation from the track model. 

Potential tracks are accepted if ,$ and dWldz are within 
tolerance. As in the case of the three-module tracks, tracks 
with common line segments are compared and that with 

the lowest x2 retained. 
In the final stage of the Radial based pattern recognition, 

the tracks found in the Radial chambers are associated with 
line segments in the Planar chambers. Straight lines in 4-z 

and R-z are used for both interpolation and projection. The 

projection in 4, which is equivalent to a projection in drift, 

is more accurate than that in radius, and consequently the 

quantity (& - qSr)Rp, where $,, RP are the mean r$ and 
radius of a Planar line segment and $J~ is the 4 predicted 

by the Radial based track, is used to select the Planar line 

segments. 

6.4. Truck selection and linking of single Planar line 
segments with Radial line segments 

At this stage in the pattern recognition there are three- 

and two-module Planar based tracks that have been linked 
to Radial line segments where possible, plus an indepen- 
dent set of three- and two-module Radial based tracks with 

associated Planar line segments. A unique set of three- and 
two-module tracks is now selected. The selection pro- 
cedure depends on the efficiency of the hardware. At 
present Planar based tracks are favoured over Radial based 
tracks and a Radial based track is retained only if it is 
verified by at least one Planar line segment. After this 
selection there remain unassociated single Planar and 
Radial line segments. In the final stage of pattern recogni- 

tion the single Planar line segments are fitted to straight 

lines in 9-z and R-z and these lines are extrapolated into 

the Radial chambers. An association with the Radial 
chambers using Eq. (31) is made as before but with 

somewhat larger tolerances. 
There remain single Planar segments unassociated with 

either Radial or other Planar segments. Scanning of events 

indicates that most of these are part of good tracks, the 

remainder of the track having been lost due to chamber 
inefficiency, track overlap etc. Consequently they are 
retained and output as tracks. Single Radial line segments 
are discarded as they cannot be associated with a vertex 

due to lack of definition in R-z. 

7. Track fitting using a Kalman filter 

Following pattern recognition a Kalman filtering tech- 

nique is used to determine the optimum track parameters 

[14]. Kalman filtering uses an incremental approach to 

fitting, whereby measurements are added successively to 
an initial set of track parameters (“state vector”). The 

state vector and its covariance matrix are projected succes- 
sively to each measurement surface, with the effects of 
multiple Coulomb scattering added to the covariance. If a 
measurement exists at that surface the state vector is 
updated by forming a weighted mean with the measure- 

ment (known as filtering). When all measurements have 
been included an optimal estimate of the track parameters 

is obtained at the final surface, equivalent to a linear 

least-squares fit. A smoothing process is then applied to 
transform this optimal state vector back to the beginning of 
the track (and to all intermediate surfaces); in the absence 
of multiple scattering this is simply a helix extrapolation, 
but with multiple scattering the smoothed state vector 
tends to follow the true trajectory. A detailed description of 
the Kalman filter algorithm as implemented for the Hl 
Forward Tracker can be found in Section 7.4. 



The Kalman filter is essential in an environment where 

multiple Coulomb scattering is significant. The HI For- 
ward Tracker contains approximately 0.5 radiation lengths 

of material, and this is distributed fairly uniformly, pre- 
cluding the possibility of fitting the track in sections with 

scattering allowed between the sections (as is done, for 

example, in the H 1 Central Tracker [ 151). Multiple scatter- 

ing can give a deviation of several centimetres over the 

length of the Tracker for low momentum tracks, and is 
therefore an important effect. 

In a conventional least-squares fit multiple scattering is 
incorporated by fixing the track parameters at one point, 
typically the beginning of the track, and then increasing the 

errors at each subsequent point to reflect the cumulative 
amount of scattering along the track. However, these 

pseudo-errors are correlated, since they reflect the devia- 

tion of the true track from the track model. The track fit 
therefore requires the inversion of an n X n covariance 

matrix, where n is the number of measurements (up to 72 

in this case). This is not necessary for the Kalman filter 

which follows the true track, with optimal parameter 

estimation at every measurement surface. 

7. I. Choice of the truck model 

The representation of the state vector is chosen to given 
an approximately linear track model, because the Kalman 
filter uses a linear approximation for error propagation. It 

is also convenient to have a track model with as many 

vanishing derivatives in the Jacobian matrix FL (Eq. (33)) 
as possible, as this allows considerable savings in comput- 

ing time for the matrix algebra involved. The geometry of 

the Forward Tracker is particularly convenient in this 

respect. Since the magnetic field is uniform to better than 
2% over the Tracker volume and parallel to the : axis the 

equation of motion is close to a helix, which gives a simple 
propagation from one z plane to another. 

The representation used is (x, .v, q/p, tan 6’. 4; :) (i.e. : 
is fixed for each measurement surface), with the direction 
of the momentum vector, p, defined by B and r$ in 
spherical polar coordinates. The main nonlinearity is in the 
dependence of x and v on 4: 0 and q/p are constants of 

the motion, and 4 increases linearly with ;. proportional to 
ql(p cos 0). First-order corrections to the track model are 

made for components of the field transverse to the z axis 
and for changes in the field as a function of position, but it 
is not necessary to include these effects in the calculation 
of the Jacobian F,. 

7.2. Point rejection 

In a conventional fit it can be difficult to identify points 
which do not belong to the track, because any deviations 
become masked by multiple scattering, which can be much 
larger than the resolution on the points. With a Kalman 
filter this masking does not happen, and in addition 

measurements can easily be added or removed during the 
fitting process without refitting the entire track each time. 

The mechanism for the addition of a new point during 

smoothing is simply to take a weighted mean of the 

measurement with the smoothed vector. To remove a point 
requires the inverse of this process, which is equivalent to 

the standard filter with a negative measurement covariance. 

After either of these the filtered and smoothed vectors at 

planes before this point are incorrect. but smoothing can 
continue with the new state vector without updating these. 

If the vector is only required at one end of the detector no 
more need be done, but otherwise it is necessary to restart 
the filter from the first altered point, and smooth back to 

this point. Further points may be added or removed in this 

process. and the procedure can then be iterated. 
This facility is not a substitute for good pattern recogni- 

tion. Although the Kalman filter can reject points which do 

not belong to the track this relies on the litted track being a 

good approximation to the true track. The pattern recogni- 
tion should provide a list of points and a state vector 

which, when extrapolated, goes within a reasonable dis- 

tance (typically a few millimetres) of the points. 

7.3. Removal of the initial state L’ector 

The Kalman filter requires a ‘*starting vector”, which 
has to be provided by the pattern recognition. Ideally this 
should be assigned large errors to avoid biasing the fit. but 

in practice a compromise must be made. The reason for 

this is that the Kalman filter uses linear error propagation. 
and therefore the state vector must be kept sufficiently 

close to the true track that a linear approximation is 

acceptable (i.e. a first order Taylor expansion of the track 

propagation equation (Eq. (34)) about the fitted state 
vector should be an acceptable approximation). In practice 

assignment of errors to the starting vector which are about 
an order of magnitude larger than those expected after the 
fit gives little bias while maintaining the stability of the fit. 

If necessary it is possible to remove the influence of the 
starting vector by treating it as a virtual measurement that 
can be removed as described in the previous Section. In the 

simplest case, having filtered from the start of the Tracker 
to the end and smoothed back to the start. the initial vector 

can be removed to give an unbiased result. However. this 

does not update the results at other planes, and the 
smoother is not reversible as is obvious from Eq. (34). A 
more sophisticated procedure is therefore needed if the 
unbiased result is required at more than just one end of the 
detector. This is achieved by starting the filter at a point 
part way along a track, and processing it in two sections. 
The filter first runs over one part and then smoothes back 
to the starting plane. The initial state vector is then 
removed. giving a state vector which contains information 
from the first section of the track. This is then projected 
into the other section, where it acts as a new initial state 
vector. Filtering and smoothing then proceed in the reverse 
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direction in that section. At this point the smoothed vector 

contains the full information from all measurements, with 

no influence from the initial state vector. The starting 
vector at that point is then removed, giving a vector with 
information from the second part of the track only. This is 

then projected back to the first section. and the filter/ 
smoother is rerun over this section. This gives the desired 
result of a state vector at all points with the information 

from all measurements, but without any influence from the 
starting vector and without having to process the whole 

track twice. 

7.4. Technical description 

The general principles of Kalman filtering as applied to 
track fitting are given in Ref. [ 141, and the notation of that 

paper will be followed here. More details, applying in 
particular to the context of the DELPHI experiment, can be 
found in Ref. [16]. However, the expressions published in 

the above papers have been reformulated to optimise 
computing efficiency, stability and clarity. This reformula- 

tion, as described below, is in some cases completely 

general and in others depends upon specific properties of 

the HI FTD, but has been found essential in order to 
achieve the reliability and speed required by mass-pro- 

duction event reconstruction. 

A state vector (with 5 dimensions for a track fit) is 

written as ~1 (lower case variables denote vectors, and 
upper case denotes a matrix), where k is the surface (plane) 
index and the value incorporates information up to plane i. 
The usual cases are ,Y: ’ (or ..r: + , ) for a projected vector, 

x: for a filtered vector and ,Y; for a smoothed vector (n is 
the total number of measurements). The covariance of .Y is 

similarly written as Cl. In the following .x: and C’: are 
written as xk and C,, respectively. The track model (which 

projects a state vector from k to k + 1) is given by a 

function ji(x,), and Fk is the Jacobian matrix: 

(33) 

where the derivatives are evaluated at xI. Measurements 
are related to the state vector via mk = H,x, (where the 
dimensions of m, and x, are generally different). The 
measurement covariance is denoted by V, = CL’, and the 
additional covariance on the state vector due to multiple 
scattering between planes k and k + 1 by Qk. 

The three main steps are projection, filtering and 
smoothing. These are given in Ref. [ 141 as follows: 

!. 
XI+, =f,(x,) 

c:+, = F,C,F: + Q, ; 

xI; = C, [(C: I )- ‘xi ’ + HTG,m,] 

C, = [(C;-‘,-’ + H:G,HJ’ ; 

(projection) 

(filtering) 

x; =xI +A,(x;+, -x;+,) 

C; = C, +A&‘;+, - C;+,)A; 

A, = C,F:(C:+, )-’ (smoothing) 

(34) 

The projection step is straightforward; application of the 
track model to x. and linear error propagation for C. The 

filtering step is also simple, being a weighted mean of the 

projected vector with the measurement. However, the 

formulation given above contains two inversions of 5 X 5 
matrices, and this can be simplified: 

X~ = [I + Cf-‘H:G,HJ’x;~’ + C,H:G,m, 

C, = [1 + C;~‘H;G,H,]~‘C;~’ 
(35) 

which only involves one inversion. Also, the expression 
for xp is of the form 

xp = W,.x-’ + W>H:m,, (36) 

where the weight matrices W, and W, (with W2 = 
C,H:G,H,) satisfy W, + W, = I; Eq. (36) can therefore be 

re-expressed as 

xI = Him, + W,(x-’ - H;m,), (37) 

which reduces the number of matrix multiplications. 

Another major improvement can be made to the filter 

equations. The measurements are always space points, and 
the measurement covariance is therefore 2 X 2 in general 
(even for Planars the matrix will effectively be 2 X 2 after 
rotation into (x, y) space, unless the wire is along the x or y 

axis). The matrix to be inverted is therefore much simpler 

than a general 5 X 5 matrix, and can be inverted ana- 
lytically (it has two columns of arbitrary elements, with the 

remaining diagonal elements being unity and other ele- 

ments zero). 

A further improvement can be obtained for Planars by 

factorising the transformation matrix H out of the inver- 
sion. Define H’ as the equivalent 5 X 5 rotation matrix: 

Then, 

C, = HiT[l + H;C;-‘H;TG;]m’H;C;-’ , (39) 

where Gi is a 5 X 5 matrix with the inverse of the 
measurement error in the (I, I) element, and zero else- 
where. The matrix to be inverted then has one column of 
arbitrary elements, unit diagonal elements elsewhere and is 
zero otherwise, and is consequently easy to invert. 

The smoothing equations given above are not transpar- 
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ent, and can be improved in both clarity and efficiency. 
Some manipulation gives the equivalent formulation 

,Y;I =f,‘(X;+, + w&+, -x’;+,]) 

C; = A,C;+ !A; + C,( 1 - F;A,7) (40) 

= A,C;+,A; + C,F:W;F,“- 

= A,C;+,A: + F&A; 

where A, =F,‘(l - W,) and W, = Q,(Ci+,)-‘. 
In the first line, F,’ has been replaced by f,‘. which is 

the full inverse track transformation, rather than a linear- 
ised approximation; this gives a much better behaviour for 
the smoother. The weight matrix W, is essentially the ratio 

of the multiple scattering error to the total projected error, 
and is therefore zero if there is no multiple scattering. In 
this case, smoothing is just equivalent to a reverse helix 

transformation. In the presence of multiple scattering, the 

effect is to adjust the smoothed state vector at k + 1 by the 
difference between the projected and smoothed vectors at 

k + 1, weighted by W,. which gives an estimate of the 
amount by which the track actually scattered between k 

and k + I. This adjusted vector is then projected back 

using the inverse transformation. 
The expressions for the smoothed covariance are some- 

what less transparent. In the absence of multiple scattering 

this again reduces to linear error propagation. The equiva- 
lent expressions given have a somewhat different be- 

haviour, in that the second term of the second and third 
expressions manifestly vanishes as Q, + 0, whereas that in 
the first expression relies on a cancellation. The third 

expression is the one currently implemented, as it involves 

fewer matrix multiplications. It is, however, not evidently 

well-behaved if the multiple scattering is large, since the 
covariance should tend towards C,, and this relies on a 

complex cancellation. This behaviour is possessed explicit- 

ly by the first two expressions. This would suggest that the 

second expression may be preferable in spite of the 
additional computation, and this question may require 

further investigation. 
A further issue is whether FL in the smoother (Eq. (40)) 

should be the same as that used in projection, or re- 
evaluated at the smoothed point. The most natural solution 

would appear to be the latter. In any case, in expressions 

involving both F, and F, ’ these must be exact inverses to 
give the correct asymptotic behaviour, and an extra matrix 
inversion is therefore required. This again indicates the use 
of the third of the above expressions for the smoothed 
covariance, as it only involves F;’ which is readily 
available from the inverse track transformation applied to 
the smoothed state vector. Conversely Q, is not re-evalu- 
ated from the smoothed state vector, as the weight matrix 
W, compares Qk with the projected covariance, which 
includes multiple scattering calculated from the projected 
vector. 

It should be noted that a matrix inversion is now only 
required if there is multiple scattering, and there is 

generally a large computational saving if multiple scatter- 
ing can be neglected between any two planes. 

7.5. Code optimisation 

Various techniques have been used to increase the 
execution speed of the code. The two main methods are the 

expansion of matrix multiplication in-line and the use of 

the known properties of various matrices. These include 
the symmetry of covariance matrices, that multiple scatter- 
ing does not change y/p, that the Jacobian matrix F, has 

unit diagonal elements, that q/p and 0 are constants of the 
motion and that changes in the momentum vector direction 
are independent of small changes in position. The latter 

two assumptions are true only if deviations from the 

nominal magnetic field can be neglected over each step of 
the Kalman filter, but this is a reasonable assumption. 

For track extrapolation the track model is approximated 

wherever possible, either with a straight line or with 

first-order approximations for changes in angle. Small- 
angle approximations are also made where possible for the 

evaluation of trigonometric functions. Multiple scattering 
is neglected within a drift cell. as it entails a substantial 
amount of calculation. 

This optimisation process has been essential to allow the 

Kalman filter technique to be used; the cumulative effect 
of all optimisations is to decrease the computing time 

needed by roughly two order of magnitude from a straight- 
forward implementation, to a point where the Kalman filter 

accounts for about 20% of the computing time taken by the 

Forward Tracker reconstruction. After optimisation most 

time is spend in the projection of the state vector from one 

plane to the next, and the time is therefore roughly 
proportional to the number of measurements. 

The increase in time if point rejection is used is 
unpredictable. The time to remove each point is negligible, 
but it is then necessary to perform another iteration of the 
whole fit for those planes which need updating; this time is 
independent of the number of points removed, but depends 
on the position of the last point removed, since points 

before this do not need to be updated. On average this 
results in about a 50% increase in computing time. 

The main time overhead for the removal of the initial 
state vector is that the first part of the Tracker is filtered 
and smoothed twice. It is therefore desirable to have this 
section as small as possible. The main constraint is that 
after the removal of the initial vector. enough measure- 
ments must have been added to give errors sufficiently 
small that the filter remains stable. If points are added or 
rejected in the second pass over the first section this 
invalidates the result in the other section, so this has to be 
repeated. 
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8. Alignment of the Forward Tracker 

8.1. Data sample 
Planar Orientation 

The internal alignment of the Forward Track Detector 
uses a sample of cosmic ray tracks recorded in zero 
magnetic field. These tracks were selected using a scin- 
tillator trigger that required the track to intersect the 
interaction region and to traverse all three Supermodules. 
Data are corrected for the time offsets measured for each 

individual cell using artificially generated test pulses. A 
special form of pattern recognition has been developed 

which exploits the fact that the tracks are straight lines. 
Radial Module 

8.2. Planar pattern recognition for alignment data Fig. 42. Definition of alignment parameters relative to the nomi- 

nal values. 

The nomenclature used in this Section is the same as 
that in Section 6.2. The four digitisations which form the 

best straight line for each orientation are found. All such 
digitisations (up to 36) are then fitted to a straight line. 
There are many occasions where track related noise and 
the intrinsic resolution of the data cause wrong digitisa- 
tions to be chosen. A procedure for removing bad digitisa- 

tions and adding in good ones is therefore implemented. 
Any of the digitisations contributing more than 100 to x’ 

or more than three and a half times the average $/degree- 
of-freedom are noted. The worst two of these are removed 

from the track and the track is refitted. At wire planes 
which do not have a hit associated with the track the 

closest hit is attached if it is within a given distance of the 

track. The tracks are then refitted to give new track 
parameters and the procedure repeated until no further hits 

are removed or added. Checks are made to ensure the 
procedure does not loop; if it does the iteration is termi- 
nated. Scanning has verified that this method is efficient at 

correctly identifying hits and tracks. 

8.3. Alignment of the Planar chambers 

Tracks which satisfy the above criteria are corrected for 
the following. 
l Time of flight. A correction is made to the drift time at 

each plane using the fitted track parameters and assum- 
ing the particle’is travelling at the speed of light in the 

direction giving the smaller x’. 
l Track angle effect. This is calculated from the fitted 

track parameters. The correction described in Section 4.1 
is parametrised by a single variable d. The fitted value of 

d agrees well with that obtained from theoretical calcu- 
lations (-0.5 cm). 

l Propagation time along a sense wire. The propagation 

speed is fitted and found to be close to the speed of 
light. 
Having made these individual corrections for each track 

This sample of tracks must however be treated with 
some caution as low momentum tracks have noticeable 

effects from multiple scattering. This causes them to have 
either a poor fit or few digitisations associated. To ensure a 

good sample, tracks are required to have an associated 

planar digitisation on at least 20 of the 36 planes and a 

x’ < 700. Each event has also been scanned to ensure that 
the track is a sensible candidate. Given these requirements 
a sample of just over 500 clean tracks remains. 

a x2 is calculated for a global fit to all tracks. Before 
freeing the alignment parameters a global t, and drift 

velocity are fitted. Two additional parameters are fitted 
which describe any deviation from the nominal wire 
stagger and wire spacing within a cell. In the fit one 

orientation is fixed in space and each of the remaining 

eight orientations has AZ, Acr and AW fitted (see Fig. 42) 

where AZ is a translation along the z axis, ALY is a rotation 

about the z axis and AW is a translation perpendicular to 
the wires. The W coordinate of an extra orientation is fixed 
in order to uniquely specify the position of the RD. The 

Table 7 
Planar alignment parameters with orientation 3 and the W coordinate of orientation 8 fixed at their nominal values. together with an estimate 

of the errors 

Orientation Error 

0 1 2 3 4 5 6 I 8 

A(Y [mrad] -0.37 -0.29 0.13 0 0.15 0.10 0.08 0.10 0.16 0.15 

AW Mnl -8 55 57 0 102 -102 106 15 0 50 

AZ Mnl 628 416 518 0 -751 207 -167 -192 28 500 
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results have been tested for stability by changing the 
orientation that is fixed and are given. along with an 
estimate of the errors, in Table 7. None of the resulting 

corrections have a significant effect on the track recon- 
struction with the exception of the rotation of orientations 
0 and I. 

8.4. Alignment of the Radial chambers 

The next step is to align the Radial chambers with 

respect to the Planar chambers. Digitisations from the 

Radial chambers are parametrised by their drift distance 

and the wire-angle in the x-y plane, ignoring any in- 
formation from charge division. This makes Radial data 

similar to Planar data, with each Radial digitisation 
defining a line in space. The digitisations closest to the 
track defined by the Planars and within 0.5 cm of it are 
associated with the track. As it is not possible to determine 

the Radial drift velocity and t,, using Radial data alone, a 

fit for these parameters is first made for the Radial data 
with respect to the track defined by the Planars. The Radial 

track angle effect is then calibrated by fitting one free 
parameter which is subsequently fixed. In the final fit the 

Planar and Radial data are fitted simultaneously with free 
parameters Aa, A.r, A): and Az for each of the three Radial 

chambers (Fig. 42), but with the Planar alignment parame- 

ters fixed. The results are shown in Table 8. None of the 

resulting corrections have a significant effect on the track 
reconstruction. 

9. Performance 

The performance of the reconstruction code has been 
assessed mainly by using a Monte Carlo simulation, with 
cross-checks from real data. The simulation will be briefly 

described, followed by the results of various measures of 

performance. 

9. I. Simulation 

The HI simulation program uses the GEANT frame- 
work [ 171 to track particles through the detector. The 
GEANT description of the Forward Tracker treats each 

Planar drift cell as a single volume; for the Radials, each 

Table 8 

Radial alignment parameters with the Planar alignment parameters 

fixed at the values given in Table 7, together with an estimate of 

the errors 

Module 

Aru [mrad] 

hx lt@ 
AY [Km1 
AZ [@ml 

0 I 2 Error 

0.26 0.24 0.31 0.20 

-192 166 -92 70 

-376 -120 131 70 

-309 405 269 500 

chamber is a single volume (i.e. the cathode planes are not 

included). The GEANT tracking code outputs a direction 
and momentum for each particle at the entrance and exit 
point of each volume. This is followed by a simulation of 
the digitisation process. A full simulation of the drift of 
charge in the chamber gas, followed by the response of the 

analogue electronics and the QT code, is impractical, so a 
parametrised simulation is used. This begins with the mean 

energy loss as a function of momentum and particle type. 

Landau fluctuations in the energy loss are simulated 
according to the GEANT routine GLANDZ. This energy is 

then scaled to give approximately the same average Q 

value as seen in real data. For the Radials, the charge is 

split according to the inverse of the charge division 
algorithm used in reconstruction (see Section 4.3.2) with 
equal preamplifier gains. Hits are removed using an 
efficiency derived from real data, but without including 
any correlations with the energy deposited (see Table 6). 

The limits on acceptance due to the Lorentz angle are 
included. 

True random noise is very rare (around 1 hit per event). 
However, analysis of data shows that there is a significant 

background of track-related noise hits within a few mil- 

limetres of the true hits. These are simulated using 
parametrised distributions derived from data. 

The detailed fluctuations in the FADC pulse shape are 

not currently well understood. Consequently. a standard 
(triangular) pulse is used as input to an emulation of the 
QT algorithm (Section 3), with various pulse-shape depen- 
dent effects added empirically. These include the two-track 

resolution. parametrised as a linear rise from 0% separation 
efficiency at 1 mm to 100% at 2.8 mm; the drift time of a 
group of hits when unresolved is taken as a charge- 

weighted average for the Planars and the time of the 
largest pulse for the Radials. The charge integral for the 
Radials is truncated at the start of the following hit if it is 

closer than the normal integration length. 

The drift and charge measurements are then smeared 

using empirical resolutions, including the variation of drift 
resolution with drift distance (see Section 4). The smearing 
is increased if there is a close preceding hit, dependent on 
both the hit separation and the relative pulse heights. If the 
smeared charge is too small the hit is discarded. A linear 
distance-to-time relation is used, with a similar drift 

velocity to the average in real data. 
The simulation described above gives a generally 

reasonable match with the data at the segment level. 
However, there is evidence for a correlated loss of hits in a 

Table 9 

Probability of removing all hits from a given track in one drift cell 

for Radials (R) and Planars (P) 

Supermodule 

Probability (R) 

Probability (P) 

0 I 2 
0.05 0.05 0.25 

0.07 0.08 0.09 
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Fig. 43. Single segment drift residuals for both data and Monte Carlo for (a) Planars and (b) Radials. 

drift cell at an appreciable rate, due either to timing 

problems, to breakdown or to other problems within the 
cell. This loss is estimated from the distribution (Table 10) 
of segments attached to individual tracks and is given in 
Table 9. The 25% loss in Radial Supermodule 2 can be 
attributed to the high hit density resulting from interactions 

in the collimator (Section 2). 

9.2. Comparison between simulated and real data 

Neutral current deep inelastic events have been gener- 
ated by the LEPTO [ 181 program, and after simulation and 

reconstruction have been selected to have significant 

hadronic activity, a large proportion of which is in the 
FTD. The primary track multiplicity is -10 to 15. In 

addition there are 40 to 60 mainly low momentum 
secondary tracks, a substantial number of which originate 
from the collimator and only penetrate the last Super- 
module. The simulation used the efficiences for the 1993 

data-taking period (Table 6). 
The output of the simulation has been compared in 

detail with real data with the same selection, using 
measures which are insensitive to the underlying physics 

processes. The primary comparison is at the segment 
finding level; Fig. 43 shows the drift residuals for single 

segments for both simulated and real data. The agreement 
is good. The radius reconstruction depends on the details 
of charge fluctuations, which are not well understood and 
not well reproduced by the Monte Carlo, but the track 

reconstruction does not depend significantly on the radius 
measurement. 

Fig. 44 shows the distributions of the numbers of hits on 
Planar and Radial segments, which indicate that the hit 
finding efficiency is approximately correct. The data 
distribution for the Radials is broader than the Monte Carlo 
due to summing over runs with differing efficiencies. Fig. 
45 shows the xz probability distribution for the overall 

0 6 12 0 6 12 
Number of hits on segment Number of hits on segment 

Fig. 44. Number of hits on single segments for both data and 

Monte Carlo for (a) Planars and (b) Radials. 

track fit. Although the fraction of tracks in the low- 
probability bin is sensitive to pattern recognition errors, 

and in particular to the presence of track-related noise hits, 
the agreement between Monte Carlo and data is excellent. 

Table IO shows the distribution of the number of Planar 

0 0.2 0.4 0.6 0.6 1 

f Probability 

Fig. 45. x2 probability distribution for the overall track fit. 
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Table 10 
The percentage of tracks in data (Monte Carlo) with different numbers of Radial (R) or Planar (P) segments attached. All tracks are required 

to have at least one Planar segment attached 

OR IR ?R 3R Any R 

1P 48.5 (35.2) 18.4 (23.1) 9.4 ( 12.4) 2.1 (2.5) 78.4 (73.2) 
2P 3.7 (4.2) 6.2 (8.5) 4.9 (7.0) 2.3 (2.3) 17.1 (22.0) 
3P 0.7 (0.7) 1.5 (1.8) 1.5 (1.7) 0.8 (0.6) 4.5 (4.8) 
Any P 52.9 (40.1) 26.1 (33.4) 15.8(21.1) 5.2 (5.4) 100.0 (100.0) 

and Radial segments attached to tracks. The distributions 

are influenced by the underlying physics processes. Never- 

theless there is good agreement between data and Monte 
Carlo, indicating that the hit and cell efficiencies are 

reasonably accurate, and that the resolutions lead to 

comparable segment linking efficiencies. 

It can be seen from the above figures and tables that the 
simulation gives an excellent description of the real data at 

the hit, segment and track level. The simulation gives a 
sufficiently good match to allow reliable figures on recon- 

struction performance to be determined. 

9.3. Performance 

Important performance criteria are the track finding 

efficiency as a function of angle and momentum (par- 

ticularly for primary tracks), and the momentum and 
angular resolution. These have been evaluated for neutral 

current events using the simulated data described above. 

Fig. 46 shows the track finding efficiency as a function 
of pseudorapidity for primary tracks with momentum 
above 0.5 GeV/c. The dotted line shows the corresponding 

efficiency for the HI Central Tracker. The comparison is 
with that Monte Carlo track which contributes the largest 

number of hits to the pattern recognised track. The 
variation of efficiency with angle is determined by the 

Forward Tracker acceptance, while the main limiting 
factor on the maximum efficiency is the correlated loss of 

3 3.5 

Pseudorapidity 

Fig. 46. Track finding efficiency as a function of pseudorapidity 

for primary tracks with momentum above 0.5 GeVlc. The dotted 

line shows the corresponding efficiency for the HI Central 

Tracker. 

all data in a drift cell (Table 9). The figure shows that the 

efficiency rises from 50% at 6” to 80% at 9”. The Tracker 

increases the range of track measurements in the forward 

direction by one unit of pseudorapidity. 
Fig. 47 shows the efficiency as a function of momentum, 

p, for primary tracks with 9” < 0 < 18” (which is the range 

over which the efficiency is independent of 0). It can be 
seen that the efficiency is essentially independent of 

momentum above 0.5 GeV/c. 
The fraction of tracks found more than once, i.e. split 

into more than one piece. is less than I%, and is roughly 
independent of angle and momentum. For 70% of recon- 

structed tracks the fraction of hits which are correct is 

greater than 80%. 
Another way of assessing the track finding efficiency is 

to look at events with tracks in other tracking detectors. 
and scan by eye to see whether corresponding tracks are 

seen in the Forward Tracker. This has been done for 

samples of a few hundred events, for low track multip- 
licities, and in a limited angular range. It gives results in 

agreement with those from Monte Carlo data. 
Fig. 48 shows the distributions of A( y/p), the difference 

between the reconstructed and true q/p, for tracks with and 
without a fit to the primary interaction vertex. In each case 

the distributions are shown for 0.5 <p < I GeV/c, I <p < 

3 GeV/c and p > 3 GeVlc. Table II gives the resolutions 
in q/p from the fits shown in Fig. 48 [ 191. The momentum 

dependence is due to multiple scattering. It can be seen 

that the inclusion of the vertex improves the momentum 
resolution by about a factor of 2 for momenta above 
3 GeV/c. The polar angular resolution is 0.2 mrad for 

or 
0.3 1 3 10 

p (GeV/c) 

Fig. 47. Efficiency as a function of p for primary tracks with 

9”<8<18”. 
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Table 1 I 
Resolution in q/p (%lGeVlc) for the FTD 

Momentum range 0.5 < p < 1 GeV/c l<p<3GeVlc p > 3 GeVlc 

Tracks without vertex 19.9 7.9 5.4 

Tracks with vertex 14.1 5.6 2.7 
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Fig. 48. A(qlp) for tracks with and without a fit to the primary 

vertex for (a) 0.5 <p < 1 GeV/c, (b) 1 < p < 3 GeV/c and (c) 

p > 3 GeVlc. The solid histograms are for primary tracks with a 

vertex fit, the dashed for all tracks, but without a vertex fit. The 

fitted curves are generalised Breit-Wigners [ 191. 

three-module, high momentum tracks and better than 

1 mrad for the majority of tracks. 

10. Summary 

This paper has described the reconstruction of tracks in 
a detector that operates in an environment made complex 
by the high hit density from proton fragmentation, and the 

large number of photon conversions and other secondary 
interactions in the end wall of the Central Tracker and the 
nearby collimator. 

The procedures used to analyse the FADC pulses and 

determine the drift velocities, timing offsets, resolutions 
and efficiencies of the chambers have been discussed. A 

technique has been developed for alignment of the multi- 
detector system. 

The pattern recognition and track fitting procedures that 
have been optimised for the mix of Radial and Planar 
chambers of the Hl Forward Track Detector have been 
described in detail. Monte Carlo studies, supplemented by 
visual scanning, have shown that in spite of the complexity 
of the events, tracks are found with an efficiency -80% 

over a wide range of the acceptance. The Tracker extends 

the range of track measurement in the forward direction by 

one unit of pseudorapidity. 
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[ 191 We define the generalised Breit-Wigner distribution as 

G(.r) = a I t [_ 
( 

+/Li _ ll(nt’>l>~‘~, 

The function has half-width at half height equal to y and 

approaches a simple Breit-Wigner as p approaches I or a 

Gaussian as it tends to infinity. The values in Table I I are 

r(2 In 2)-l”. which corresponds to v for a Gaussian. 


