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Abstract. New classes of exactly solvable potentials are discussed within the path integral
formalism. They are constructed from the hypergeometric and confluent Natanzon potentials,
respectively. It is found that they allow incorporation of four free parameters, which give rise
to fractional power behaviour, long-range and strongly anharmonic terms. We find six different
classes of such potentials.

1. Introduction

In a previous paper [1] | discussed a class of potentials which are known as ‘conditionally
solvable potentials’ [2-5]. They have the specific feature that they incorporate strongly
anharmonic, fractional power behaviour, and long-range terms. They modify the usual
potentials in quantum mechanics in a specific way such that they are quantum mechanically
exactly solvable; however, one is not completely free to choose the parameters and the
couplings of the potentials.

In this second paper | want to generalize the potentials of [1-5] to more general classes
which are related to the Natanzon potentials [6], and cf [7—16]. With their six parameter
structure the Natanzon potentials are designed in such a way that a wider range of shapes
and potential wells is allowed in comparison to other well known potential problems in
guantum mechanics. Let us mention, for example, the Morse potential, the radial harmonic
oscillator, the Coulomb potential, and the class of hypergeometric potentials as contained in
Poschl-Teller and modified@chl-Teller potentials [17]. They have numerous applications,
e.g. in the study of solvable potentials in quantum mechanics in general, in the study of
molecular physics for modelling a more realistic single-particle electronic shell structure,
in atomic physics for quark—antiquark forces, charge densities of nuclei, or in solid state
physics. The two classes of Natanzon potentials cover all known potentials for which an
analytic solution to the bound and continuous state problem can be found.

The class of the hypergeometric Natanzon potentials is defined (note the different
notation used in the literature) by

ﬁfz(z —1)+h0(1—z)+hlz+ﬁ 3 z" 2_2im
2m R(2) 8m 7

whereR (z) = apz®+boz +co, andz = z(r) is implicitly defined by the differential equation
7/ = 2z(1 — z)/+/R(2). The functionz varies in the intervat € (0, 1). Theh?-term is the
Schwarz derivative of with respect tor.

Va(r) = 1)
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The class of the confluent Natanzon potentials can be obtained by the substitution [6]
ag = 02/7%, by = 01/, f = go/7% h1—ho— f = g1/, z = h/t, and taking into account
the limit t — 0. This yields

EZ g2h2~|—g1h+77 EZ (3(}1”)2 2/’1’”)

V. = _ _ -
"= R gm \°\ %
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where R(r) = ooh? 4+ o1h + co, andh = h(r) is implicitly defined by the differential
equationk’/2h = 1//R(r). The variabler and the functiom: = h(r) are assumed to be
positive. Thei?-term is the Schwarz derivative aéfwith respect to-. In [18] | succeeded

in calculating the path integral representations corresponding to the two potentials (1) and
(2) explicitly in terms of the corresponding Green function. The energy eigenvalues (
guantization conditions) were equations of fourth degree in the energy. In spite of the fact
that the bound-state energy-level conditions are rather complicated, closed form solutions
in terms of the Green function were still possible. This is quite surprising because the exact
analytic form of a particular Natanzon potential is only implicitly defined and may not even
be known analytically.

The two path integral representations in [18] contain all former path integral solutions
which are related to the radial harmonic oscillator and the (modifiedgfi—Teller potential,
respectively. In the two latter cases at most two free parameters can be freely chosen.

In particular for (2), the choicesg = n = 0, g1h — gih®, and o1h — o1h?,
respectivelyco = n = 0, g1h — g1h*, o1h — o1h® produce modifications of the two
kinds of conditionally solvable potentials as discussed in [1]. They have been called a
modified Coulomb potential and a radial confinement potential, respectively. The new
potentials which | would like to caltonditionally solvable Natanzon potentigiave four
free parameters, and seem to be entirely new. Of course, a similar modification can be
done for the hypergeometric version, and gives four new classes of potentials. These
modifications of the original Natanzon potentials are suitable for our purposes, and the path
integral discussion of these four new classes of potentials is the main object of this paper.

Although exactly solvable, these potentials are sufficiently complicated to be worthy of
serious consideration in the modelling of actual physical forces. This can be the case where
one wants to study an approximation of a model, or where an exactly solvable model is used
as a starting point for a comprehensive numerical investigation, cf the recent review [19],
for example. By choosing a path integral approach we succeed in gaining comprehensive
information about the bound-state solutions of these potentials (if they exist), and what is
often more important, about the scattering states which eventually allow for the calculation
of cross sections and phase shifts. In this respect, the path integral provides a convenient
tool for the calculation in which the proper analytic structure of the solutions is made
manifest.

In order to avoid unnecessary overlap | do not repeat the space—time transformation
technique as sketched in [1], e.g [20—34], and references therein. For the actual formulation
of the path integral representations of the potentials | use the canonical path integral
definition as developed in [20-23, 27, 35, 36]. Again this will not be repeated here.

This paper is organized as follows. In seat®| present the six classes of ‘conditionally
solvable Natanzon’ potentials labelléd, V,, Vs, Va4, Vs and Vg, respectively. The well
established space-time transformation technique reduces each path integral problem to
one that is already known. The final result in each case includes the statement of the
corresponding Green function. The poles of the Green functions yield in the first two
classes implicit expressions (transcendental equations) for the energy eigenvalues, in the
second two cases equations of fourth degree in the energy which admit an analytic solution,
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and in the last two classes also only transcendental equations for the energy eigenvalues
can be stated. The bound-state wavefunctions and the scattering states are not evaluated
explicitly. Section 3 contains a summary and a short discussion.

2. The potentials

2.1. A generalized Coulomb potential

In the first class of potentials | consider a modification of (2) by changing the power
behaviour off in the gi-term to agih®, in the o1-term too14*, and we setg = n = 0.
Thus we obtain the following firstonditionally solvable confluent Natanzon potential

EZ h3+ h2 E2 n’ 2 n
Vi) = - S TEm () ot ®)
2m R(r) 8m n n
where
Wy 1

R(r) = o1h* + oph? — 4)

2h(r)  J/R(r)’

The variabler and the functiom = h(r) are assumed to be positive. The special choice
o1 = 16 ando, = 0 givesh = h(r) = /r and reproduces the modified Coulomb potential
of [1], including, of course, the quantum potentiaV = —37?/32mr?2, i.e.

_EZ g2 & 3
V(r)—32m<r+\/7—r2>~ (5)
1

Assuming a power dependenke= h(r) = r*, asr — oo, we finda = 3, and the potential

(5) also describes the asymptotic behaviouVofr). In order to calculate the path integral
representation of the potential (3) we perform the transformatiesn z together with the
time substitution d = ds/z’* such that the new pseudo-tineé can be introduced via the
constraintfgﬂ ds/z’2 =T =1t" —t. This space—time transformation causes the emerging
Schwarz derivative to cancel with tié-term and gives the path integral representation in
the polar coordinaté

r@")=r"

o
K" r'sT) = / Dr(t) exp{;l_/ [’Zr'z— Vl(r)i| dt}
r(t)=r' :
VROORGCONY? [ dE _orm [ 10 2 p
h(s")=h" . ., B EZ
L[ (mp2, Eovp I
X / Dh(s) eXp[E/O (Zh + 1 h 8mg1h) dsi| (6)

h(0)=h’

_ (¢R(r/)R<r”)>l/2 dE icrr
“\4h(rHh(") R 27h

x/ ds” exp(i(o2E — h*g2/16m?o1 E —712g2/2m)s”/4l7)
0
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AN
v(s”)=v //

« [ Do exp[lznf%fo (12 - 0t?) ds] X
v(0)=v’

= f die*i”/ﬁ(;(v”(r”,r’: E) ”
R 27i

and | have performed the additional variable shift= h — hgi/4moq1E, and set

w?> = —01E/2m. The path integral (6) now has exactly the form as the one in [1] for
the modified Coulomb potential after the space—time transformation. There it was solved
with the appropriate boundary conditions, i.e. the path integral (6) is not the path integral of
a shifted harmonic oscillator over the entike As pointed out in [37] the wavefunction has

the wrong behaviour at the origin of a singular potential, and therefore such a ‘solution’ must
be discarded as physically unacceptable [38]. Similarly, as in [1] it is not possible to extend
the variableh to the entireR, a feature which is in accordance with the one-dimensional
Kustaanheimo—Stiefel transformation which mdps — R* [34, 39]. Therefore the path
integral (6) is a radial path integral with> 0 [40], and the path integral (7) is a radial path
integral for a harmonic oscillator with > —k2/4mo+E, for fixed energyE. The additional
linear term spoils the symmetry with respect to reflections in the variablie [41,42] |
developed a procedure for dealing with such problems within the path integral. We assume
that we have evaluated a path integral problem with a pote#mt{al) in, say, the entire

R. This path integral is calle& "’ (T). The corresponding Green function is denoted by
G (E). Now we consider the path integral problem with the same poteWtidut with
Dirichlet boundary conditions at the locatian= ¢ and we consider the half-spage> a.

Then the Green function in the half-space- a is given [41, 42] by:

x(t")=x"

b= iET /R (D) i [ [m .2
}:Z/O dr £/ / Dy oy x (1) exp{ﬁfﬂ [ZX - V(x)] dt}
x(t")=x'
GV (", a; EYGY)(a, x'; E) ©)
GWV(a,a; E)

The Green function corresponding &"’(E) which we need is the Green function of the
harmonic oscillatorG® (E), and has the form

2mw 2mw
GOW ViE) = | D, [ 2w Do = [T ). 10
",V E) e (—=v) 7V =V (10)

Here D,(z) is a parabolic cylinder function [43,p 1064]. Inserting (10) into (7) and
complying with (9) we obtain the following solution for the Green functiGi? (E):

D VREORCONY? [ m
G (r ,r;E):( ) \/an C(—v)

=GV (" x;E) -

4h(r')h(r")

(2[5 (0 g ) ]2 (10 )]
X D\) = h>(}”)— Dl) - = h<(r)_
h dmor E h dmor E
2 72
—Dv|: ane (h(r’)— 81 )}DU[ 2me (h(r”)— h"g1 )}
h 4dmo E h 4dmo E

2mw R 2mw R
xD, ()2 28 ) [p (- |22 2& )L (11)
h 4moE h 4moE
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Here | have used the shorthand notation

1 1 h2go htg?
=—4+ ——|FE - — . 12
V=0 dan (02 2m 161n201E> (12)
This determines the energy spectrum by the zeros of the parabolic cylinder function, i.e.
2mw, h?
p, (- /2" T8 ) _g (13)
! h 4mo,E,

By v, = v(E,) andw, = w(E,) | have indicated the explicit dependence Bj. The
analysis in [42] showed that the poles coming from the prefactor in (11) play no role
in the corresponding boundary condition problem. Equation (13) clearly generalizes the
corresponding result of [1] to the case of four parameters.

2.2. A radial confinement potential

The second class abnditionally solvable confluent Natanzon potentiaks want to consider
has the form
EZ g1h4+g2h2 EQ n' 2 n
V. =_—2= ___°" 4+ _(3|—) —2— 14
2= T R +8m< <h> h> (14)
where
h(r) 1
= . 15
2h(r)  /R(@) (15)

The special choice, = 9 ando, = 0 givesh = h(r) = r?3 and reproduces the radial

R(r) = o1h® + o,h?

confinement potential of [1], including the quantum potenfidt = —5i2/72mr?,
V)= z gur?P 4 gor =23 — > (16)
18m 4r2

and the radial confinement potential (16) is also the asymptotic solutidh, dbr 1 = h(r)
powerlike asr — oo. The necessary space-time transformation has the form h
accompanied by the time substitution-dl R(h)ds/4h?, as before. This gives the following
path integral representation in the polar coordinate

r(l‘”):r”

7

. r/
K", r'sT) = / Dr(t) exp{;_lf ["21;'»2— Vz(r)i| dt}
r(t)=r' :
VROOYRCONY? [ dE_prpp [~ _ >
=S — E —h%gy/2m)s" 4R
(oo ) Jozm & ;& oxpliost ~Faszms' i
h(s")=h" .
i [ . R? Eo
% / Dh(s) exp[}_lfo (’th— %g1h2+ 41h) ds} (17)

h(0)=h'

_ («/R(r/)R(r”))l/Z/ dE o IET/R
“\ 4h(HR() R 27h

x/ ds” exp(i(o2E + mofE?/2h%g, —712g2/2m)s/'/4l7)
0
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v(s")=v" . o
x / Du(s) exp[lzn; fo (12 - w??) ds] (18)
v(0)=v’
E .
= f d—_e—'ET/”GWz)(r”,r/; E) (19)
R 27|

and | have performed the additional variable shift= h — mo1E /h®g1, and setw =
h./g1/2m. Compared with (6) the roles of the quadratic and the linear term are interchanged.
The path integral (17) now has exactly the form as in [1] for the radial confinement potential.
Taking the corresponding result of [1] we obtain the following solution for the Green
function G2 (E):

VREORENY? [m
V2) (17 3 — -
6" 0rs 8 = (Sginey ) s T

(ol (o2 o (- 22
Al o ol o 52)]
o5 20) o )

Here | have used the shorthand

1 1 2E?  R?
=4 = (o T 82) (1)
2 dho 2h%g, 2m
This determines the energy levdl by the zeros of the parabolic cylinder function, i.e.
mw moy
D, | — E,|=0. 22
( T R2g ) 22)

| have indicated by, = v(E,) the explicit dependence af,. This result again generalizes
the corresponding case of [1].

In the special case qf; = 0 we must consider the path integral solution of the linear
potential. In this case for the Green functiah®*=(E) (note E' = o»,E — h%g»>/2m) we
obtain

Gy Lol 1 E) = 372\ 4h(r)h(r) h(rH_UlE T oE

X{K

<I [V —amoik <h<(r) T 4E/>2}
O'lE

i

[V —2mork <h>(r) + A )}
3h o

3

|:«/—2mc71E <h(r') n 4E’>2:|
O'1E
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roo, —2mo1 E <h( ,,) 4E’>§
3 3 E

[ /=2m R2g, J=2m R\ ?
X I1| ——==[ooF — —— K1 — oo E — —— .
301hE 2m 3| 3o1hE 2m
(23)

I,(z) and K, (z) are modified Bessel functions [43,p 958]. The possible bound states are
determined by

J=2m R\ V2
1/3[301,1& (az 2m) (24)

x K

[

In terms of the Airy function Afz) this gives

[ (2) (e T) ] -

which gives a cubic equation ifi, and has the formo{, > 0, n € Ny, are the zeros of the
Airy function, i.e. Ai(—«,) = 0 [44, p 166])

R2e,\%  202h%3
(UZE,,— g2> St g2 g (26)
2m m

which can be cast into the canonical form (the case= 0 is equivalent with the case
discussed in [1] and must be treated separately)

h? h°g> "\
E3— 3 A52a3)E? +3 E, — =0. 27
" 2mo 3( g202 + ) + (2m02> <2m02) 27)
Onereal solution of this cubic equation is given by [50]
— D) R
P\® [0)\* 35 — R? 2R® RS
( 3) * ( 2) 3 =773 " (29)
72 h2g2 \° h%g2 \°
R = 3 40 =3 T=-— . 30
~amog (36207 + ) s (MUZ) (2m02> (30)

An asymptotic analysis of the cubic equations shows thawfor> oo, i.e.n — oo, we

have a behaviour of the bound-state energy levels accordirg t& —|g2|oe,,_3/2, g2 <0,
and the accumulation point 5,, = 0.

2.3. A modified Rosen—Morse potential: |

In the third class of potentials | want to investigate, | consider the hypergeometric Natanzon
potential with the following modifications

B2 32(1—2) + ho(1 — z) + haz*? N h? a(? 2 2
2m R(2) 8m

V3(V) /
Z

(31)

Z/
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where R(z) = boz + co, andz = z(r) is implicitly defined by the differential equation
7' =2z(1 — z)/+/R(z). The variablez varies in the intervak € (0,1). For R(z) = 1, we
find z = %(1+ tanhx), x € R, and the emerging potential has the form

V) i ho + 1 ho— 3 P 3 (32)
ryr) —m — — —_
2m \'° 1+e? ' Jite?z 4l+e2)2

which looks exactly like the first modified Rosen—Morse potential in [1]. In the original
Natanzon potential}, this choice yields the usual Rosen—Morse potential, which justifies
our notion.

In order to calculate the path integral representation corresponding to the potential (31)
we perform the transformation — z together with the time substitutiors d= ds/z/z.
This space—time transformation causes the emerging Schwarz derivative to cancel with the
h2-term and gives the path integral representation

r(t”):r”

KY @' 1 T) = / Dr(t) exp{;l_/ ['Zr‘z— V3(r)i| dt}

r(t)=r'

_ ( R()R(") )1/2 di e—iET/ﬁ/OQ ds”
2z A — ()L — z (")) 0

R ZJTE

Z(SH):Z”

i ('[m., ER®)
X 0/ DZ(S) exp{ﬁ/; |:2Z +m
z2(0)=z

n? ho hy 3
_8’"<Z2(1 —-2) - #2(1—2)2 4z(z - 1)” @ } ' 49

We perform a further space—time transformatios: z(x) = tantf x, x > 0, together with
the time substitution d= 4 tantf xds/ costf x. The quantum potential emerging from the
Schwarz derivative of with respect tax is given by

G 3 3
AV="(a44+ > = 34
8m( + sink? x cosf?x) (34)

and we obtain the path integral representation for the emerging Manning—Rosen [45]
potential with the solution according to [23, 25, 46—49]
(R(r/)R(r”))”“ dE izt
z(rz(r") R 27h

K" r'sT) =

* / T exp (il (bo + co) E — % /2m]s" /R
0

x(s")=x" ”
i [ [m R? (n? -1
X Dx(s) expy = L 4 4h Cothx>i| ds}
/ ® p{h./o [2 2m<sinhzx !
x(0)=x’
(35)
— / Ee—iET/EG(Vg)(V//’r/; E) (36)
R 2mi
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with the Green functionG(Y?(E) of the third conditionally solvable Natanzon potential
given by

/ i\ 1/4
GO 1 m(R(r )R(r )) F(my — Le)T(Lg +my+ 1)

2\ z(r)z(r") I'(my +mz+ DI (m1—ma+ 1)

x< 2/207)  2/207) >%<"’1+m2+“

1+ Vz(r) 1+ /2"
X(l—ml—m>%("wz>

L+ V20D 1+ V20

1—-Vz-(r)
><2F1<—LE —i—ml,LE—i—ml—}—l;ml—mz—}—l;l_l_Zir))
2z (r
X2Fl<_LE +my, Lg+mi+1mi+mo+1; 1_;/7 %()r)) (37)
where

Lg = % (\/1— hy — 2m(b0+Co)E/EZ — 1) (38)
m1z = Jho+1— 2meoE /% + 3\/hy + 1 — 2m(bo + co) £/ (39)

and where;Fi(a, b; c; z) is the hypergeometric function [43,p 1039]. Furthermore | have
used the shorthand

2mcoE
n2=ho+1— EZO . (40)

Note that the numbey is a square root and the specific sign it takes may vary in different
examples. From the poles of the Green function and from the spectral expansion of the
Manning—Rosen potential [49], respectively, we derive the quantization condition for the
bound-state wavefunctiona € N):

R 1
ho + 1 — 2mcoE, /> -
\/o+ coE,/h” + 52m(n+2>

= % <\/1+h1—2m(bo+co)En/ﬁz—\/1—h1—2m(bo+c0)En/}_l2> .
(41)

This equation, which is actually an equation of fourth degree in the varighlés with its
four parameters an obvious generalization of the corresponding case in [1]. Introducing the

abbreviationsB; = 1 (h1—1), By = 2 (h141), C1 = 4% (ho+1), a1 = 4co, @z = bo+co,
ii =h(n+ 3)/~/2m it can be rewritten as

VC1— E, + 2ii = \/By — a2E, — /B2 — a2E, (42)

and can be cast in the canonical fo(@, = C; + 4i? — ii/m, by = (2bg — co))

E}+bE3+ cE2+dE, +e=0 (43)



374 C Grosche

a = (b5 — 4a3)?

4
b = ; [(b% - 401%)(20!2(31 + By) — bCy + 8(Xlﬁ2) + 64()510[%}712]

8
=" [2(4a1ﬁ2 — 02B1)2 + 3(2wBy — boC2)? + 1b3C3
+ B1B2(8a3 — b3) — azCo(a2Co + 2byB1)
.2 ) ) (44)
— 472(201b2C5 + b3C1 + A2 By + 4a2C1)]
_8 _1 ) 2 _ ~2
d= B (Boap 2b2C2 dain® + a2 B1)(C; — 4B1 By + 16C1711%)
+ 8Co*(@1Ca + 2b2C) |
1
e=" [(cg — 4B1 By + 16C4ii2)? — 64c1c§ﬁ2] .
a
Equation (43) can be solved [50] by considering the solutions of the quadratic equation
E, by —d
El+(b+A) 2 +y+ 2= =0 (45)

where A = +,/8y + b2 — 4c, i.e. with the four solutions

Ep,y=—0b+A)x£ \/(b + A)?2 — 16(y + byA— d) (46)

andy is any of the real roots of the cubic equation

8y — 4cy? + (2bd — 8e)y + e(4c — b?) — d* = 0. (47)

2.4. A modified Rosen—Morse potential: Il

In the fourth class of potentials we want to investigate, we modify the hypergeometric
Natanzon potential according to

E2§ 1— + ho(1 — 4+ hi(l— 1/2 EZ ”\ 2 "
Vi) = 1 321 =9 +hod -2 + M- <3<z ) —ZZ,)
Z

2m R(z) 8m (48)

Z/
whereR(z) = boz + co, andz = z(r) is again implicitly defined by the differential equation
7 = 2z(1 — z7)/+/R(z). Repeating the considerations of (32) gives an additional factor
e~ in the h;-term, therefore reproducing the modified Rosen—Morse potential of [1]. We
perform the same space—time transformation as before and obtaas (n (40))

"

r(t")=r .
1 t

KY9@" ', T) = / Dr(1) exp{;l_/ ['Zr‘z— V4(r)i| dt}
p

r(t)=r'

_ ( R()R(") )1/2/ di e—iET/ﬁ/OQ ds”
2z A = z() (L — 2 (")) R 21h 0
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Z(S//)=ZN

i [ Tm . ER(z)
X / Dz(s) exp{}_lfo |:22 +74Z2(1—Z)2
z(0)=z’

72 < ho N h1 3 )} g }
a5 - )
8m\z2(1—z) z2(1—2)%2 4z(z—1

(R(r/)R(r”))”“ 9E e
z(r)z(x") R 2nh

x / ” ds” exp(i[boE + % (ho — )/2m]s" /h)
0

u(s")y=u"

i m ., h? 7]2—;l1 cothu
x f Du(s) ex"{n/o [2” zm(tanm”lsmhu ds

u(0)y=u’
(49)
dE _pr
- / S € GG ), (50)
R

Here the path integral for the hyperbolic Scarf-like potential [48,51] has been used. The
Green functionG"?(E) of the fourth conditionally solvable Natanzon potential is thus
given by

2m (R(r/)R(r”))”“ T(my— L)T(L, +m1+1)

G (' X E) = =
( ) R\ z(r)z(r") L(mi+ma+ DI (my—ma2+ 1)

1 1 1 —(m1—m32)/2
1 —— V(14—
) [4( - ¢1—z(r/)> ( - ¢1—z<r~))}

X< \/m m >ml+m2+l/2
1+/1-z0)1+J/1—2z(")

1 -1
><2F1<—L,7+m1,L,, +m1+1;m1—m2+1;2<1+)> )

1—z.(r
z-(r)
XoFi| =Ly, +myg, Ly+m1+1,mi+ma+ 1 5 |-
(1+vi=z=®)
(51)
Here denote
1 2m 2
my2 = 2\/h0 +hi+1- hqcoE + \/1— Ez—mboE (52)
1 2m
anz(\/ho—hl—i-l—EzCoE—l). (53)
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With the abbreviation®, = & (ho+1—h1), B, = & (ho+1+hy), C1 = 2k%/m, a1 = 4bo
we get the following quantization condition € N):

VC1—a1E, + 2t = /By — coE, — /B2 — coE,, . (54)

This equation is again an equation of fourth degreetjn Equation (54) is an obvious
generalization of the corresponding case of [1], where the eigenvalue equation was a cubic
equation, and can be solved in a similar way as the previous case.

2.5. A modified Manning—Rosen potential: |

In the fifth class of potentials we want to investigate, we modify the hypergeometric
Natanzon potential according to

Z
0= o RG) * om -2

72 _ 31 _ 3/2 72 ”\ 2 "
R* fz(z =D+ ;(1—2)+hz h <3(z) ) (55)

Z/

where R(z) = aoz? + zbg, andz = z(r) is again implicitly defined by the differential
equationz’ = 2z(1—z)/+/R(z). If we make the ansat® = z2, we getz = 1—e %, r > 0.

In the original Natanzon potential we obtain the Manning—Rosen potential. In the present
case we get

h?
V(r):zm(f+1—

-3 R 3
l1-e? J1—eZ 41-e2)?)’
Due to its singular structure this potential may be called a modified Manning—Rosen

potential. Such a ‘conditionally solvable potential’ seems to be new. We perform the
same space—time transformations as in the previous two cases and obtain

|:n21i’2 - V5(r)i| dt}

_ ( R@)R(") )1/2/ di e—iET/ﬁ/ood "
"\ )@= z)A=2("))  Jr 27 y

(56)
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t"=r
i t
KYe", ' T) = / Dr() eXp{ﬁ/
;

r(t)=r'

”

Z(S”)=Z”

i ER
x / Dz(s) exp{;_l/O [’12122+4z2(1(—Z)z)2

z(0)=z’

R? f h1 3
“om <z(1— ot ara o T a2 z))} ds} &7

_ (R(mR(r”))”“ 9E e
“\ z(rz () R 21h

X /oo ds” exp(i[(ao + bo)E — EZ/Zm)s”/E)
0
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x(s"y=x"
i (' m R (V4
D exp{ — X% 4 _ pitanhx ) | d
* / X p{h/o [Zx +2m(cosﬁx ! )} s}
x(0)=x'
(58)
dE .7
_ @ BTGV (" ' E). (59)
R 27'”

Equation (58) corresponds to the path integral of the Rosen—Morse potential as discussed in
[26,47]. However, we encounter in the present case the same difficulty as in the discussion
of the two confluent conditionally solvable Natanzon potentials. The transformation

7z = z(x) maps(0,1) — R*, and (58) is therefore a radial path integral. But the Rosen-—
Morse potential is defined in the entifeand due to the odd tankhterm we cannot continue

to the entire real line. Hence, we must apply the same technique as in the first two examples
and therefore the Green functia@"®’(E) of the fifth conditionally solvable Natanzon
potential is given by

G(r", z(0); E)G(z(0),7'; E)

GY(E)r".r'E)y=G@",r' E) — 60
(E)( ) ( ) G(z(O), 2 (0); E) (60)
with the Green functiorG (E) given by
G rimy =" (JR(r/)R(r”))”2 F(my— Lp)T(Ly +mi+1)
r,r ==
B2\ z(r)z(r") C(my+my+ DL (my —mp+ 1)
1— V() 1= Yz "
X
2 2
1+ \/m 1+ \/m (m14+m3)/2
X
2 2
1+ 4z~
xZF1<—LB 4 My, Ly +my+ Lmy+mo+ 1 ;m)
1- VA4<
X2Fl(_LB+MlaLB +m1+1;m1—m2+1;2Z(r))~ (61)

Here | have used the shorthand

2m 1
Ly=\[f+1- a0k = (62)

1 2m 1 2m
mi2 = 2\/_(1’11 +1) - hq(ao +bo)E £ 2\//’11 -1- hq(ao +bo)E (63)
and have further set
2maoE
= f+1- ;?0 . (64)

Note that the number is a square root and the specific sign it takes may vary in different
examples. We obtain consequently the transcendental quantization condition for the bound-
state energy levelg,

2F1( = Lp(En) +ma(En), Li(En) +ma(Ey) + L ma(Ey) +ma(Ey) + 1 3). (65)
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In the case ofR = z2, i.e. for the potential

vy (B A 3 (66)
(r)_2m<1—e—2’ J1— e 4(1—e—2’)2)

we obtain the quantization condition

oFs(— Lp(En) +ma(En), Ln(En) + ia(En) + 1 a(En) +iia(E) + 1 ) (67)
where we have set
- 1 2m 1
LyE) = |- - E— =
B(E) . 5 (68)
P1a(E) = Bia—S_Ppyllp_a_3_2p (69)
ia(B) =, a"REEs Fal

2.6. A modified Manning—Rosen potential: Il

In the sixth class of potentials we want to investigate, we modify the hypergeometric

Natanzon potential according to

B2 fzz =D+ 30 —2)+h¥2V1—2z R (3(1/)2 2”)
Z/

VG(V)Z% R(2) +%

; (70)
b4
where R(z) = aoz? + zbg, andz = z(r) is again implicitly defined by the differential
equationz’ = 2z(1 — z)/+/R(z). Repeating the analysis as 3 we obtain an additional
factor €” in the hq-term, therefore producing another modified Manning—Rosen potential,
ie.

=

V(r)=:m<f+1— (71)

/- % I hie™" 3
l-e> J1-e> 41-e2)2)
We perform the same space—time transformations as in the previous cases and obtain with
v as in (64)

r(t")=r" . o
K@ r';T) = / Dr(1) exp{;_l/ |:r;li'2— Ve(r)i| dt}
r(t)=r' !
_ ( JRGERG) )“ i [ GE e [ "
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o i ER()
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. 72
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x(s//):x//

x/ ds” exp(i[boE +1*(f — 1)/2m)s" /h) / Dx(s)
0 x(0)=x’
" =
P me M (2 2 tanhx
X exp{ = /o |: 5 X o <(v 2) tantf x + thOth ds (73)
= / 9E ier oo ", r's E). (74)
R 2|

The path integral (73) is the path integral for the hyperbolic barrier potential as discussed in
[48], however in the half-spadg™. Applying the same method as fai's) (E), the Green
function GY®)(E) of the sixth conditionally solvable Natanzon potential is therefore given
by

G(r",z(0); E)G(2(0),r'; E)

GY (E)+".r'E)y=G(@",r' E) — 75
(EX( ) ( ) G(z(0).2(0): E) (75)
with the Green functiorG(E) given by
G rimy = (JR(r')R(r”))”Z [(my— Ly)T(Ly +m1+1)
r',r; = —
2\ z(r)z(r") L (my+ma+ DT (my — ma + 1)
1- V20 1= Va2
X
2 2
1+ m 1+ m (m1+mp+1/2)/2
X
2 2
1+ Vzs
><2F1(—LU + M1, L, +mi+1Lm+mo+1; +2z(r)>
1 T AVKL<
><2F1(—Lu+M1,Lv+m1+1;m1—m2+1;zzm)- (76)

Here | have used the abbreviations

1 . 2m
LU:Z(\/f—i—l—i—lhl—EzaoE—l) (77)
1 ) 2m 1 2m
= — = l_ - — E:l: - i E. 7
mi2 2\/f+ ihy 72 0 ‘/4 S T bo (78)

Note that the minus sign in the first term im;, is due to the reality condition of the
problem, cf [48]. Bound states with enerdy, are determined by the equation

2F1( = Lu(En) + ma(En). Ly(En) + ma(En) + 1 ma(Ey) +ma(Ey) +1: 3). (79)

A more detailed investigation, and investigation of the special ¢ase z2, is left to the
reader.
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3. Summary and discussion

In this paper the path integral treatments of six classes of ‘conditionally solvable Natanzon’
potentials have been presented. For the analysis of these problems | have used the path
integral approach. In spite of the fact that the potentials are defined only implicitly and
may not even be known analytically, it has been possible to calculate the Green function in
terms of the variable, and the functionsR(r) andi(r) andz(r), respectively. The poles

of the Green functions have given the bound-state energy levels, i.e. we have obtained
transcendental equations in terms of parabolic cylinder functions, hypergeometric functions,
and equations of fourth degree, respectively, and the cuts have provided the scattering states.

The two ‘conditionally solvable confluent Natanzon potentials’ (5) and (16) are but two
simple solutions of the potential classésand V,, respectively, where,; = 0. The general
structure of the potentidl; modifies the Coulomb interaction by adding a long-range effect.

V, instead has a confinement character. The special«@ag#&es trivial results, and there
do not seem to be any other simple potentials.

It remains for us to consider not only the real solutions of the eigenvalue equations, but
also the other possible complex solutions as well. For instance, in (27) we have found an
asymptotic behaviour of the bound-state levels which is in accordance with the result of [1].
There only real solutions were allowed because the zeros of the Airy function are known
to be real. By a suitable choice of parameters all solutions of (27) need not to be real. The
existence of complex solutions, i.e. resonances, depends on how strong a potential barrier
is above the energy of the lowest lying scattering states. It is known that (3) can have such
resonance states [37], and this feature of locating resonances in scattering processes was
one of the reasons to study potentials like (3). Therefore it should be worthwhile to carry
out a numerical investigation and a detailed Green function analysis, respectively, along
these lines. This would fix the requirements as to which of the three solutions of the cubic
equation (27) or of the four solutions of (43), (54) actually contribute to the spectrum, and
which are unphysical and must be discarded. In particular, resonance states would add to
the variety of potential forces in nuclear physics and elementary particle physics for states
which are subject to decay.

On the other hand, the potential (14) has a confinement character, and its power-
dependence describes phenomenological anteraction, as supported by latticeD, cf
[52,53] and references therein. Therefore both potentials can serve as a proper refinement
of important phenomenological models due to their four-parameter structure.

In [54] de Souza Dutra and Girlich have presented two-dimensional extensions of the
potentials (5) and (16) according (@, A > 0)

72
Vi(x,y) = %wz(x2 +y9) + ;mxz—l]:yz [kz + Vf(arctar(y/x)) - ﬂ (80)
i = 1,2 andVy(r) the potential (5) and>(r) the potential (16). With the coordinate choice
x = ucosy, y = usiny the problem is separable. However, the same line of reasoning
as sketched in subsection 2.1 concerning the proper boundary conditions applies as well.
Therefore thetranscendentalequations for the eigenvalueiéfyfl) (13),(22), now for the
variabley > 0, determine the separation constant which enters into (80). This eventually
yields a radial harmonic oscillator path integral with
m 5 5 Ez)‘z'i_Ei(,Zz)_%

Viw) = S ou + o 2

which is easy to solve, e.g. [21, 23, 27, 40].

(81)
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In the second set ohypergeometric conditionally solvable Natanzon potentihis
bound-state solutions are determined by an equation of fourth degree which complicates the
expressions analytically. In both cases the bound-state energy levels with the wavefunctions
and the scattering solutions can be obtained in principle. However, due to the complicated
structure of the equations, and the fact that a more simple case has already been discussed in
an earlier paper [1], an explicit evaluation is omitted. The six path integral representations
(8), (19), (35), (49), (58), (73) together with the explicit form of the corresponding Green
functions (11), (20), (37), (51), (60), (75) therefore containfdrener path integral solutions
as special cases, and at the same time generalize them.

In the set of potentials (31) and (48) the choR&)  z? is explicitly excluded, so one
can either sebg = 0 or ¢g = 0. Choosingbg = 0 yieldsz = %(1+ tanhx), x € R, leading
to the two modified Rosen—Morse potentials of [1]. The structure of the two potentials is
such that they can describe a complicated scattering process by wells or troughs on the real
line. The alternative;y = 0 givesz = cottfr, r > 0, and leads to the Rosen—Morse and
hyperbolic barrier potentials of [48,51], respectively, and therefore does not give rise to
any new features.

In order to include in the hypergeometric cadex z2, wherez = 1—e %, r > 0, which
gives in the original Natanzon potential the Manning—Rosen potential, | have modified the
structure ofVy, once more. | have obtained two new potentials which | have called due to
their singular behaviour ‘modified Manning—Rosen’ potentials. The effect of the potentials
can be interpreted as modifying a Coulomb interaction in a space of constant curvature,
e.g. [55,56] and references therein. Alternatively, they combine the effect of screening
a Coulomb potential with a long-range behaviour according to (5). In both cases the
guantization conditions are transcendental equations involving the hypergeometric function.

I have therefore found four classes of ‘conditionally solvable hypergeometric Natanzon
potentials’ with either complicated scattering properties on the real line, or modified
screening features for singular potentials. In particular, the potentials (56), (66), (71) provide
explicit solutions in terms of the radial variabtewhich appear to be new.

The particular features of the ‘conditionally solvable Natanzon potential’ also clarify
the origin of their solubility. The term which is proportional/ié guarantees this very fact.
Whereas in [2-5] this term seems to come in ‘by hand’ and has to be chosen in a suitable
way, its structure is fixed becauseista Schwarzian derivative. The incorporation of this
term in the potential therefore arises in a natural way, in a manner similar to the way the
Schwarzian derivative appears in the space-time transformation of path integrals, and the
guantum potentiahV in the definition of path integrals on curved manifolds.
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