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The main topics and questions dicussed in working group A, ”Quantum Fluctua-
tions in Beam Dynamics”, are summarized. Instead of going into details, only the
underlying ideas and concepts are illustrated.

1 Introduction

The optimal performance of colliders and synchrotron light sources requires a
good understanding of beam dynamics. A beam constitutes an ultrarelativistic
(v = ¢) ensemble of charged particles with spin distributed in m bunches under
the influence of

e external electromagnetic fields such as dipoles, multipoles and rf fields

e space charge, wakefields, and fields of the counter-rotating beam in col-
liders

e radiation
e restgas, and clouds of ions, electrons or positrons

e noise due to rf, power supplies, ground motion, intra-beam scattering
etc.

Altogether it is a complicated nonlinear, explicitly stochastic many-particle
system.
Questions of interest are

e what is the long-term behaviour (~ 10° turns)?

e what is the kinetics of (statistically averaged) macroscopic quantities
such as particle density or polarization?

e is there relaxation to an equilibrium?

e what is the beam response to perturbations?
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The classical treatment of these problems is in the framework of statistical
physics (dynamics) based on the Liouville-Vlasov-Fokker-Planck equation.! ?
The aim and main question of working group A was: where 1s 17 Sources
of quantum manifestations on a macroscale are well known in electron storage
rings namely radiation and spin. For example, a correct description of the
beam emittances has to take into account recoil effects due to the quantum-
like emission of the synchrotron light, and the building up of transverse beam
polarization in electron storage rings via spin-flip synchrotron radiation is a

purely quantum mechanical effect® Further important questions are

e when is it necessary to perform quantum calculations (i.e. to formulate
conditions for a quantum treatment of beam dynamics)?

e are there new quantum phenomena (suppression of orbit echoes, spin
echoes)?

e what are the quantum foundations of the classical treatment of radiation
in electron storage rings?

e can quantum tools such as supersymmetric quantum mechanics, path
integrals and Feynman diagrams also be helpful for classical beam dy-
namics calculations (stochastic dynamics)?

The following topics were treated in working group A - partly in joint sessions
with other working groups.

1. laser cooling and optical stochastic cooling* ® ©

2. quantum corrections to the electron equation of motion”
3. quantum effects in beam echoes ®
4. stochastic theory of moving atoms-quantum field interaction °

5. path integral derivation of the Langevin-Abraham-Lorentz-Dirac equa-
tion for relativistic particle motion in quantum fields 1?11

6. quantum fluctuations in free-electron lasers 2

7. quantum limits (beam spot size, emittance) 13 14

8. stochastic beam dynamics and Vlasov-Fokker-Planck description of par-
ticle motion in accelerators ° 1617



In the following I will describe four topics in more detail. T will only illustrate
the main ideas and concepts. For the -sometimes- very sophisticated technical
details the reader is referred to the original contributions to these proceed-
ings. Thus, this summary should be considered merely as an appetizer for the
quantum problems related to beam dynamics in accelerators.

2 Quantum foundations of the classical treatment of radiation in
electron storage rings

The problem of radiative backreaction on the dynamics of charged particles
and its selfconsistent treatment has a long history in classical electrodynamics -
starting with the work of Abraham, Lorentz, Poincaré, Sommerfeld, von Laue,
and culminating in Dirac’s classical theory of the electron, which in relativistic
covariant notation takes the form

ma" = FL, +T* (1)
with
TH = gi(du — iakawu) (2)
33 c?
(F?., external field term). For more information on the historical background

and for a detailed discussion of the implications of I'* and the problems related
with @“ see for example Jackson '8, Erber '°, Kim 7 and Rohrlich. 2° As
mentioned already, the classical theory i1s not sufficient to calculate the beam
emittances of electrons in storage rings. Besides the damping effects due to
radiation, recoil effects due to the stochastic emission of photons have to be
taken into account, thus making the motion explicitly stochastic similar to
a Brownian particle subject to a noisy environment. 2! 22 The calculation of
the beam parameters such as emittances, beam sizes (i.e. average fluctuations
of the particle around the closed orbit) and lifetimes usually start from the
stochastically and dissipatively perturbed Hamiltonian of the coupled synchro-

betatron motion?32* or, similarly, from the stochastically perturbed Lorentz-
Dirac equation 2° 26
ma = Pl + T + 9 (3)

where 7 is a noise term simulating the stochastic recoil effects.

An interesting and important question i1s: what are the limits of validity
of this classical approach and what are the quantum foundations?

Using the concept of an open quantum system and techniques developed
by Schwinger 7, Feynman and Vernon ?® a stochastic theory of relativistic
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particles moving in a quantum field was presented. The results of these inves-
tigations can be summarized as follows: it is a first principle derivation of the
Abraham-Lorentz-Dirac equation as the consistent semiclassical limit for non-
linear particle-field systems. It offers a consistent resolution of the paradoxes of
the Abraham-Lorentz-Dirac equation including the problems of runaway and
acausal solutions and it shows the -generally- non-Markovian nature of the
quantum particle open system. The technical and very subtle details can be
found in the contributions of Hu and Johnson elsewhere in these proceedings.

Let me only illustrate in more detail the underlying ideas, namely the
open quantum system concept. The main problem and question is: how can
noise and dissipation arise in a quantum framework? Consider for example a
quantum harmonic oscillator coupled linearly to a heat bath of infinitely many
harmonic oscillators. The total system is described by the Hamiltonian (zero
point energies neglected)

H:waTa—i—ija}aj—l—Zgja}(aT—|—a)—|—h.c. (4)
J J

with the usual commutation relations for the operators a, af, aj, a}
[a,a']=1 [a, a}] = dij. (5)

We are only interested in the oscillator subsystem dynamics and not in the
bath . The density matrix describing this subsystem is given by

ps(t) = Trr(prys(t)) (6)

where the summation (trace) is over the heat bath degrees of freedom of the
density matrix of the total system. It can be shown ?°, that the corresponding
Wigner function (i.e. the quantum analogue of the classical phase space distri-
bution), which describes the quantum subsystem, obeys a Fokker-Planck-type
equation equivalent to a classical damped harmonic oscillator driven by white
noise f(t)

mi+ ag +w’qg = f(1). (7)

These heat bath models have been studied extensively in quantum optics and
statistical physics. 303132 For example, (two-level) spin systems coupled to
a heat bath have been used to explain and to study complicated relaxation
phenomena in NMR. 33

The results presented in the working group were generalizations of the
above mentioned simple systems to relativistic particles moving in quantum
fields. Coarse graining and averaging over the quantum fields then led to the
Abraham-Lorentz-Dirac-Langevin-like equation for the particle motion.
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3  Quantum calculations

During the working group sessions quantum calculations were presented for
free-electron lasers, for optical stochastic cooling and beam echoes.

The free-electron laser mechanism, i.e. the generation of coherent ra-
diation, is based on a subtle interaction and synchronization of an electron
beam with a co-propagating radiation field in an undulator, thus transfering
energy from the beam to the radiation. * Although the first investigations
of the free-electron laser principle were done in a quantum mechanical frame-
work 3% it is well known, that the gain (i.e. the energy transfer), the beam
properties (microbunching) and the radiation characteristics can be calculated
classically within the Vlasov-Maxwell theory. 36 Quantum mechanical effects in
free-electron lasers can be neglected when the spreading of the electron wave
packet is less than one wave period of the radiation over the length of the
37

)

wiggler (see for example Freund and Antonsen 1€

AL
Yo /\w

<A (8)

with A, Compton wavelength | L wiggler length, A, wiggler period, ~, rela-
tivistic factor of the electrons and A radiation wavelength. Stated in a different
way, quantum effects can be neglected if the recoil due to radiation is unimpor-
tant, a condition which is usually fulfilled in most of the existing and planned
devices.

However, from first principle considerations and for a better understanding
of the start-up process of a free-electron laser, especially in the self amplified
spontaneous emission (SASE) mode, and for an understanding of the photon
statistics it is also desirable to have a general quantum theory of these devices.

Using an N, —electron, M —mode quantized Hamilton operator for the free-
electron laser process in a frame moving with the mean velocity of the electron
beam (for details see Schroeder 12)

M 1 Ne 1
H= Zth(a;aA T 5) T Zh95p§+
A=1 j=1
M .
+Zhg>\(a;au2exp(—i®>\j) + h.c.) (9)
A=1 j=1

(where the undulator is treated classically) the SASE mode, the start-up pro-
cess due to electron beam fluctuations and the photon statistics has been dis-
cussed in detail.



For further discussions of quantum effects in free-electron lasers see also

the review article by Dattoli and Renieri® and the contributions of Pellegrini

and Kim in the first Conference on Quantum Aspects of Beam Physics 3.

In another contribution Chao 8 has described a project about possible
quantum mechanical effects on beam echoes. Echoes in particle beams are
based on the sensitive link between macroscopically measurable quantities and
the microscopic phase space dynamics of the particles® Measurements have
been performed at various machines® 4243 and because of the above mentioned
sensitive connection between macroscopic quantities and microscopic dynamics
these measurements can provide valuable insight into various diffusion mech-
anisms in a beam. The question under study is: can quantum mechanics for
example suppress the echo effect?

Optical stochastic cooling was another topic discussed extensively. This
kind of cooling could be very important for future muon collider projects. In
optical stochastic cooling the spontaneous radiation from pick-up undulators
1s amplified and fed back into the same bunch inside the kicker undulator with
an appropriate phase delay. Heifets © and Charman ® have presented fully
quantum mechanical treatments of the beam-undulator and optical amplifier
system.

In further contributions and discussions it was shown how concepts and
tools from condensed matter physics such as Fermi liquid theory, quasiparticles,
Wigner crystals and Coulomb chains can be used to get a better understanding
of the quantum limits of beam emittances and crystallization phenomena in

accelerators. 13

4 Quantum tools

Quantum physics tools such as supersymmetric quantum mechanics, path in-
tegrals, Feynman diagrams etc. can also be used in classical beam dynamics
calculations. As an example one can consider the influence of noise on the
particle motion. Mathematically, noisy systems can be described by stochastic
differential equations of the form (p =1,...nand v = 1,....m)

b= ful@n, )+ gun(@y, o, )Wy (10)

v=1

where W, designates a Gaussian white noise vector process. For these Marko-
vian diffusion processes there exists a fully developed mathematical theory**
4546 Ay equivalent probabilistic description is via the Fokker-Planck equa-
tion for p(x1,...xpn,t) or the transition (or conditional) probability density
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p(21, ... n,t|T1,, .- Tng, to). The corresponding Fokker-Planck equation is given
by (Tto interpretation)

0 N
a—f = Lppp (11)

with the Fokker-Planck-operator (g = (gul,),gT transpose of g)

X " R
Lep == 0ufutg > Oudulog")uv (12)
n=1

p=1r=1

The Fokker-Planck equation for p(Z,t)(# = (#1, ..x,)) is a linear partial differ-
ential equation, which describes the probability to find the stochastic system
at time ¢ between the phase space points # and ¥ + d&.

A typical physical example is the horizontal motion of an electron in a
collider under the influence of the nonlinear field of a counter-rotating beam
(positron or proton beam)”

P4 ai+ V(e t)=h(t)+ oW (13)

(o radiation damping, V(x,t) focusing and nonlinear beam-beam force, h(t)
external (perturbing) field, ¢ noise simulating quantum fluctuations). Ques-
tions of interest are: p(z,,t), response of the dipole moment e < (1) >=
e [ p(x, &, t)zdadi to the external perturbation h(t), lifetime 7, higher order
moments, correlations etc.

From the theory of stochastic processes it is well known, that the propa-
gator (or transition probability density) p(Z,¢|2p, o) with

P, 1) = / D, 1|5, to)p (i, to) dath (14)

can be represented as a path integral (using the Chapman-Kolmogorov equa-
tion). For example, for a (scalar) stochastic differential equation of the form

& = a(z) + VDW (15)

one obtains 47

p(z’ |z t) = /Dx(t) exp {—S[«]} (16)

with

Slz] = %/ﬁ di(i — a(x))? (17)
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and
N-1

1
Dz(t)= 1 dx(ty
v =i, a0

vz

) (18)

Evaluation of these path integrals with the use of field theoretical tools*” can
help to get a better understanding of the complicated classical stochastic beam
dynamics problems.

Analytical solutions of the Fokker-Planck equation are very rare. Usu-
ally one has to apply perturbative methods or numerical tools. For numerical
checks of the underlying integration scheme and code it is however very help-
ful to have non-trivial exact solutions. For low-dimensional (1+1) problems
supersymmetric quantum mechanics offers a way to construct exact solutions
(see for example Risken %® and the applications discussed by Bernstein and
Brown *° and Chen °9).

5 Classical Vlasov-Fokker-Planck description of beam dynamics

An interesting new method for a stable long-term integration of the Vlasov-
Fokker-Planck equation was presented by Warnock '®* and applied to the lon-
gitudinal motion of electrons in the SLAC damping ring. Within the classical
approach one has to solve

0 Of 0H Of OH 0 0?

TSP S el o)+ DS

ot  0q Op  Op Oq Jp Jp
for the classical phase space distribution function f(g¢,p,t). The left-hand side
is the Vlasov-part and the right-hand side, the Fokker-Planck-part, is due to
damping («) and the quantum fluctuations. H is given by

H(q,p,t) = He(q,p,t) + Heou(q,p,t, {f}) (20)

where H. describes the external fields and H.y; 1s the collective part depending
on f. The time-dependent solution of

19}
a—{ — Lyf+ Lepf (21)

is based on an operator splitting scheme

(19)

LvﬁLFP—>LV —)LFP—).... (22)

For Ly (the Vlasov part) the method of local characteristics is used, i.e. one
evaluates the Frobenius-Perron operator (time evolution operator of the Li-
ouville equation) for small time steps At by treating the collective force as
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time-independent over At, and for Lpp (the Fokker-Planck part) elementary
partial differential equation methods 1% ' can be used. This very efficient
and stable scheme has been used to study the sawtooth instability and the
beam-beam interaction in electron colliders.

Conclusions and acknowledgments

In this short summeary I have tried to illustrate some of the questions, ideas and
concepts which have been discussed during the workshop in working group A:
”Quantum Fluctuations in Beam Dynamics”. Because of lack of space I could
not cover all presentations in full detail, and I want to apologize to those partic-
ipants whose contributions were not appropriately mentioned in this summary.
Like the first workshop in Monterey, this second meeting on ” Quantum Aspects
of Beam Physics” gave the opportunity to discuss interesting and challenging
problems in beam physics of accelerators. The interdisciplinary character and
the lively and clear presentations of the participants made this a very exciting
conference. The author wants to thank all the colleagues, who have contributed
to the work of our working group for their efforts. Special thanks, however,
go to Pisin Chen and Stefania Petracca for their great work preparing this
workshop, and the very efficient organization, which, altogether, made this a
very enjoyable meeting.
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