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Abstract
We discuss the role of the perturbative QCD inclusive dijet cross sec-
tion in describing multiple partonic collisions in high energy pp scat-
tering. Assuming uncorrelated partons, we check for consistency be-
tween an impact parameter description of multiple hard collisions and
extrapolations of the total inelastic profile function. We emphasize the
availability of parameterizations to experimental data for the impact
parameter dependence of hard collisions.

1 Introduction

A satisfactory description of the complex hadronic final states expected at the LHC must certainly
incorporate a description of multiple partonic collisions. However, models of multiple collisions
necessarily use techniques that mix perturbative and nonperturbative processes. It is therefore
important to incorporate as much experimentally availableinput about the structure of the pro-
ton as possible. Information about the impact parameter dependence of hard collisions can be
obtained from parameterizations of generalized parton distribution functions (GPDs). The gluon
GPD can be measured experimentally in electroproduction oflight vector mesons at small-x or
in photoproduction of heavy vector mesons. Because it is a universal objects, the gluon GPD
can then be used in the impact parameter description of multiple hard collisions inpp scattering.
Furthermore, it is possible to make direct use of the relationship between inclusive and total cross
sections to obtain consistency constraints. In this contribution, we give a summary of the steps
presented in [1] for comparing a description of multiple hard scattering that utilizes GPDs with
extrapolations of the total inelastic cross section. This allows us to obtain constraints on the min-
imum value of the lower transverse momentum cutoff in the perturbative QCD (pQCD) formula
for inclusive dijet production.

2 Total Inelastic Cross Section in Impact Parameter Space

The standard way of describing the totalpp cross section in impact parameter space is to use the
profile function, defined in terms of the elastic amplitudeA(s, t) as

Γ(s, b) =
1

2is(2π)2

∫

d2q eiq·bA(s, t). (1)
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The optical theorem then allows the total, elastic, and inelastic cross sections to be expressed in
terms of the profile function:

σtot(s) = 2

∫

d2bRe Γ(s, b), (2)

σel(s) =

∫

d2b |Γ(s, b)|2 , (3)

σinel(s) =

∫

d2b
(

2Re Γ(s, b) − |Γ(s, b)|2
)

(4)

=

∫

d2bΓinel(s, b), (5)

The last line defines the inelastic profile function,Γinel(s, b). If the amplitude is dominantly
imaginary, then unitarity requiresΓ,Γinel ≤ 1.

Experimental measurements at currently accessible energies find a slow growth for the
total cross section and a slow broadening of the profile function with increasing energy (see
e.g. [2] and references therein). In a standard fit to the profile function of the form∼ e−b2/2B(s)

with B(s) = B0 + α′ ln s, comparisons with data then yieldsα′ ≈ 0.25 GeV−2, and a slope at
LHC energies (14 TeV) of aboutB ≈ 21.8 GeV−2. As illustrated in [3], there are only small
variations between different model extrapolation.

In the next few sections, we will address the issue of consistency between such extrapola-
tions and descriptions of multiple hard collisions that utilize GPDs. For the purpose of illustration
we will work with the model for the profile function obtained in [4].

3 Inclusive Hard Collisions in Impact Parameter Space

In most perturbative or semiperturbative treatments of multiple collisions, the basic input is the
lowest order inclusive perturbative QCD (pQCD) expressionfor the dijet production:

σinc
2jet(s; p

c
t) =

∫ ∞

pc 2

t

d p2
t

dσ̂

dp2
t

fi/p1
(x1; pt) ⊗ fj/p2

(x2; pt). (6)

Implicit but not shown are a sum over parton types, aK factor, and any necessary symmetry
factors. The hard partonic differential cross section is for 2 → 2 partonic scattering between
partons of typei and j. The symbol⊗ represents convolutions in momentum fraction. The
parton distribution functions (PDFs) are evaluated at a hard scale which for dijet production
should be approximately equal to the relative transverse momentumpt of the produced dijet pair.
For pQCD to be valid, thept integral in Eq. (6) must be cut off from below by some scalepc

t .
Because Eq. 6) diverges at lowpt, The value ofσincl

2jet(s; p
c
t) is quite sensitive to the precise value

of this cutoff. It should be chosen large enough for perturbation theory to be safe, but small
enough to incorporate the maximum possible range of kinematics.

A description of where hard collisions take place in impact parameter space can be ex-
tracted directly from experimental measurements of the gluon GPD. The GPD describes non-
diagonal transitions in the target arising from the exchange of twot-channel gluons, as illustrated
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Fig. 1: The basic graphical structure in heavy vector meson photoproduction (or light vector meson small-x elec-

troproduction) with two gluons exchanged in thet-channel. The lower bubble represents the GPD withP andP
′

labeling the different states that appear in the non-diagonal correlator.

in Fig. 1. It is related to the standard gluon PDF via the relation

xfg(x, t;µ) = xfg(x;µ)Fg(x, t;µ) (7)

whereFg(x, t;µ) parameterizes thet-dependence and is referred to as thetwo-gluon form factor.
The GPD is evaluated at a hard scaleµ, and it reduces to the standard gluon PDF att = 0. Fourier
transforming Eq. (7) into transverse coordinate space gives the impact parameter dependent GPD,

Fg(x, ρ;µ) =

∫

d2∆Fg(x, t;µ) e−i∆·ρ, t ≡ −∆2. (8)

Because the GPD in Eq. (7) is a universal object [5], it can be combined directly with Eq. (6) to
yield a description of the impact parameter dependent inclusive dijet cross section inpp scatter-
ing. If we define the overlap function,

P2(b, x1, x2;µ) =

∫

d2ρ1 Fg(x, |ρ1|;µ)Fg(x, |b − ρ1|;µ), (9)

then the probability for a single hard collision withµ ≈ pt at impact parameterb is

N2(s, b; p
c
t) = σinc

2jets(s; p
c
t)P2(s, b; p

c
t). (10)

The subscript2 refers to the production of a dijet pair. Using a dipole form to fit the two-gluon
form factor, one obtains an analytic expression for the overlap function,

P2(s, b; p
c
t) =

m2
g(x̄; pc

t)

12π

(

mg(x̄; pc
t)b

2

)3

K3(mg(x̄; pc
t)b). (11)

(See [1] and [6] for more details on the above steps.) Herex1 ≈ x2 ≈ x̄ = 2pc
t/
√

s. The
parametermg(x̄; pc

t) is a mass that determines the radius ofP2(s, b; p
c
t) and may depend on both

the energy and on the hard scale. Formg(x̄; pc
t) we will use the parameterization obtained in [6].
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Fig. 2: The solid line shows the model extrapolation of the total inelastic profile function. The other three curves are

the contributions from dijets to the total inelastic profilefunction obtained using Eq. (14) with the generalized parton

distribution and three different values for the lower cutoff on transverse momentum.

4 Multiple Hard Collisions

For the case of uncorrelated partons, one can determine the dijet contribution to the total inelastic
profile function (the non-diffractive contribution) from Eq. (10) by simply using the definition of
the total inclusive inelastic cross section [7]. To see verygenerally how this works, we start with
the exact formula obtained in [1] for the total inelastic profile function, written as a series of
contributions from higher numbers of collisions:

Γinel
jets(s, b; p

c
t) =

∞
∑

n=1

(−1)n−1N2n(s, b; pc
t) . (12)

For n > 1, N2n(s, b; pc
t) is the probability function analogous to Eq. (10) but for ann parton

collision. For collisions involving identical uncorrelated partons

N2n(s, b; pc
t) =

1

n!
N2(s, b; p

c
t)

2. (13)

With this conjecture, Eq. (12) is a geometric series that becomes simply,

Γinel
jets(s, b; p

c
t) = 1 − exp [−N2(s, b; p

c
t)] . (14)

Hence, the assumption of uncorrelated partons results in what is typically referred to as the
eikonal model. In a complete model of multiple partonic collisions, the effect of soft interactions
is usually incorporated by including extra soft eikonal factors in the exponential of Eq. (14).

Consistency between extrapolations of the total inelasticprofile function in Eq. (5) and
Eq. (12) requires,

Γinel
jets(s, b; p

c
t) < Γinel(s, b). (15)

Now we can check directly whether Eq. (15) is satisfied for a particular extrapolation of the total



profile function. As an example, we show in Fig. 2 the model of [4] at
√

s = 14 TeV. We com-
pare this with Eq. (14) calculated using the parameterization for the two-gluon form factor taken
from [6] for the b-dependence of the hard collisions. The total inclusive cross section is calcu-
lated directly from Eq. (6) using the CTEQ6M parameterizations [8] for the parton distribution
functions. The calculation is shown for three sample valuesof pc

t .

For very smallb it is not that surprising that Eq. (15) is violated since thisis the region
where at very high energies the gluon density becomes large and nonlinear gluon recombination
effects are expected to lead to taming of the gluon distribution. However, the plot in Fig. 2
shows that forpc

t . 3.5 GeV, there is even a problem with Eq. (15) at rather largeb ∼ 1.5 fm
where the uncorrelated assumption would naively be expected to be a good approximation. This
implies that a rather large choice forpc

t is needed to maintain consistency between a description
of multiple hard collisions in terms of the gluon GPD and the total inelastic profile function. We
note that a value ofpc

t between3 GeV and4 GeV is consistent with the parameter constraints
reported by the Herwig++ group [9].

We note that it is certainly possible that the actual high energy total inelastic profile func-
tion is much different from current extrapolations. Whether this is true will be answered as higher
energy data become available. However, as mentioned in Sect. 2 there is little variation between
different extrapolations, and there would have to be a rather large deviation from general theoret-
ical expectations in order to bring the total inelastic profile function into agreement with Eq. (15)
with a small value forpc

t . Regardless of what the true form of the high energy extrapolation
profile function is, the consistency requirement of Eq. (15)should somehow be enforced.

Assuming for now that we have a roughly correct description of the total inelastic profile
function forpp scattering, a violation of Eq. (15) for a givenpc

t implies a breakdown of one of the
basic assumptions. Either the uncorrelated assumption of Eq. (13) is badly violated, or Eq. (10)
is not an accurate description of the basic hard scattering.Hence, an improved description of
the low-pt region at largeb likely requires some modeling of correlations. A general procedure
for including transverse correlations has recently been proposed in [10]. An approach that goes
beyond the standard pQCD description of the hard part by resumming soft gluons is suggested
in [11]. A characteristic of the second method is that the width of the hard scattering overlap
function becomes much narrower than what is expected from the 2-gluon form factor at high
energies.

Using a narrower radius for the hard profile function ultimately allows total and inelastic
cross sections to be fitted with smaller values forpc

t (see, for example, [12]). We remark, however,
that a narrower width for the hard part implies thatN2(s, b; p

c
t) grows large with energy very

quickly at small-b. In deep inelastic scattering this would correspond to a very rapid approach
to the unitarity limit. Thus, if the width of the hard part is too narrow, there is a danger that it
will violate constraints from HERA data on the approach to the saturation limit. Furthermore, an
extremely narrowb-distribution in the hard overlap function would correspond to at-dependence
for the 2-gluon form factor that is too weak. As an alternative approach, we suggest directly
modifying the uncorrelated assumption in Eq. (13).



5 Conclusion

We have illustrated that, by describing the hard profile function in multiple collisions using pa-
rameterizations of the GPD and requiring consistency with model extrapolations of the total
inelastic profile functions, we may obtain constraints on the allowed minimum transverse mo-
mentum cutoffpc

t in the inclusive hard scattering cross section. For the caseof uncorrelated hard
collisions, we find that a rather large value forpc

t is needed.
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