
Increase with energy of parton transverse momenta in the
fragmentation region in DIS and related phenomena.

B. Blok1†, L. Frankfurt2, M. Strikman3

1Physics department, Technion, Haifa, Israel
2Institute School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel,
3Physics Department, Pensilvania State University, College Station, USA.

Abstract
We demonstrate the fundamental property of pQCD: smaller is the size
of the colorless quark-gluon configurations, more rapid is the increase
of its interaction with energy. In the limit of fixed Q2 and x → 0
we find the increase with the energy of the transverse momenta of the
quark(antiquark) within the qq̄ pair produced in the fragmentation re-
gion by the strongly virtual photon. Practical consequences of discov-
ered effects is that the ratio of DVCS to DIS amplitudes should very
slowly tend to one at very large collision energies, that a rapid projec-
tile has the biconcave shape, which is different from the expectations
of the preQCD parton model where a fast hadron has a pancake shape.
We found dominance of different phases of chiral and conformal sym-
metries in the central and peripheral pp, pA, and AA collisions.

1 Introduction.

A leading order dipole approximation Ref. [1–5], provides the solution of the equations of QCD
in the kinematics of fixed and not too small x = Q2/ν but Q2 → ∞. The characteristic feature
of this solution is the approximate Bjorken scaling for the structure functions of DIS, i.e. the two
dimensional conformal invariance for the moments of the structure functions. In this approxima-
tion as well as within the leading log(x0/x) approximation, the transverse momenta of quarks
within the dipole produced by the local electroweak current are restricted by the virtuality of the
external field:

Λ2 ≤ p2
t ≤ Q2/4. (1)

Here Λ ≡ ΛQCD = 300 Mev is a QCD scale. It follows from the QCD factorization theorem
proved in Refs. [6, 7] that within this kinematical range the smaller transverse size d of the
configuration (the transverse distance between the constituents of the dipole) corresponds to a
more rapid increase of its interaction with the collision energy:

σ = αs(c/d2)F 2π
2

4
d2xGT (x, c/d2), (2)

here F 2 = 4/3 or 9/4 depends whether the dipole consists of color triplet or color octet con-
stituents, GT is an integrated gluon distribution function and c is a parameter c = 4 ÷ 9. It is
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well known in the DGLAP approximation that the structure function GT (x,Q2) increases more
rapidly with 1/x at larger Q2. This property agrees well with the recent HERA data. The aim
of the present talk is to demonstrate that the transverse momenta of the (anti)quark of the qq̄ pair
produced by a local current increase with the energy and become larger than Q2/4 at sufficiently
large energies. In other words the characteristic transverse momenta in the fragmentation region
increase with the energy. Technically this effect follows from the more rapid increase with the
energy of the pQCD interaction for smaller dipole and the kt factorization theorem.

It is worth noting that this kinematics is very different from the central rapidity kinemat-
ics where the increase of p2

t was found in the leading αs log(x0/x) BFKL approximation [8]:
log2(p2

t /p
2
t0) ∝ log(s/s0). Indeed, the latter rapid increase is absent in a fixed order of pertur-

bation theory, and is the property of the ladder: the further we go along the ladder, the larger
are characteristic transverse momenta, i.e. we have a diffusion in the space of transverse mo-
menta [8]. On the other hand the property we are dealing here with is the property of a charac-
teristic transverse momenta in the wave function of the projectile.

The dipole approximation provides the target rest frame description which is equivalent to
the Infinite Momentum Frame (IMF) description of DIS in LO DGLAP and BFKL approxima-
tions. To achieve equivalence with the IMF description in the NLO approximation it is necessary
to calculate radiative corrections to cross section in the fragmentation region, i.e. to take into ac-
count the increase of the number of constituents and related renormalization of the dipole wave
function. Recent calculations [9, 10] suggest that these corrections are small. Consequently in
the talk we will neglect these corrections.

Our main result is that the median transverse momenta k2
t and invariant masses of the

leading qq̄ pair in the fragmentation region grow as

k2
t ∼ a(Q2)/(x/x0)λ(Q2),

M2 ∼ b(Q2)/(x/x0)λM(Q2).

(3)

Here k2
t and M2 are the median squared transverse momentum and invariant mass of the quark-

antiquark pair in the fragmentation region. (The median means that the configurations with
the momentum/masses less than the median one contribute half of the total crosssection). The
exponential factors λ and λM are both approximately∼ 0.1. These factors are weakly dependent
on the external virtuality Q2. The exact values also depend on the details of the process, i.e.
whether we consider the DIS process with longitudinal or transverse photons, as well as on the
model and approximation used. The exact form of λ(Q2), and λM(Q2) are given below.

The rapid increase of the characteristic transverse scales in the fragmentation region has
been found first in Refs. [11–14], but within the black disk regime (BDR). Our new result is
the prediction of the increase with energy of the jet transverse momenta in the fragmentation
region/the rise of the transverse momenta in the impact factor with the energy, in the kinematical
domain where methods of pQCD are still applicable. This effect could be considered as a pre-
cursor of the black disk regime indicating the possibility of the smooth matching between two
regimes.



Our results can be applied to a number of processes. First we consider the deeply virtual
Compton scattering (DVCS) process, i.e. γ + p→ γ∗ + p.

We also find that at sufficiently large energies

σL(x,Q2)/σT (x,Q2) ∝ (Q2/4p2
t ) ∝ (1/x)λ. (4)

Hence the σL/σT ratio should decrease as the power of energy instead of being O(αs).

Our results have the implication for the space structure of the wave packet describing a
rapid hadron. In the classical multiperipheral picture of Gribov a hadron has a shape of a pan-
cake of the longitudinal size 1/µ (where µ is the scale of soft QCD) which does not depend on
the incident energy [17]. On the contrary, we find in section 5 the biconcave shape for the rapid
hadron in pQCD with the minimal longitudinal length (that corresponds to small impact param-
eter b) decreasing with increase of energy and being smaller for nuclei than for the nucleons.

Finally, in the last section we discuss the possible applications of our results to pp, pA
collisions at the LHC.

2 The target rest frame description.

Within the LO approximation the QCD factorization theorem allows to express the total cross
section of the scattering of the longitudinally polarized photon with virtuality−Q2 � Λ2

QCD off
a hadron target as the convolution of the square of the virtual photon wave function calculated in
the dipole approximation and the cross section of the dipole scattering off a hadron [1, 18, 19].
In the target rest frame the cross section for the scattering of longitudinally polarized photon has
the form :

σ(γ∗L + T → X) =
e2

12π2

∫
d2ptdz

〈
ψγ∗L(pt, z)

∣∣∣σ(s, p2
t )
∣∣∣ψγ∗L(pt, z)

〉
. (5)

Here σ is the dipole crosssection operator:

σ = F 2 · π2αs(4p2
t )(−~∆t) · xG(x̃ = (M2 +Q2)/s, 4p2

t ), (6)

here ~∆t is the two dimensional Laplace operator in the space of the transverse momenta, and
M2 = (p2

t + m2
q)/z(1 − z) is the invariant mass squared of the dipole. In the coordinate rep-

resentation σ is just a number function, and not a differential operator as in the momentum
representation.

Integrating by parts over pt it is easy to rewrite Eq. 5 with the LO accuracy in the form
where the integrand is explicitly positive:

σ(γ∗L + T → X) =
e2

12π2

∫
αs(4p2

t )d
2ptdz

〈
∇ψγ∗L(pt, z)

∣∣∣ f(s, z, p2
t )
∣∣∣∇ψγ∗L(pt, z)

〉
, (7)

here
f = (4π2/3)αs(4p2

t )xG(x̃, 4p2
t ). (8)

In the derivation we use the boundary conditions that follow from the fact that the photon wave
function decreases rapidly in the p2

t →∞ limit and that the contribution of small pt is the higher
twist effect.



Eq. 7 can be explicitly rewritten in terms of integration in k2
t and z as

σL(x,Q2) = 6π
παe.m.

∑
e2qF

2Q2

12

∫
dk2

tαs(4k
2
t )z

2(1− z)2 k2
t

(k2
t +Q2z(1− z))4

· g(x̃, 4k2
t ).

(9)
where x̃ is given by (k2

t /((z(1 − z) + Q2)/s. Here we take into account explicitly the (rather
weak) z-dependence of the integrand.

The similar derivation can be made for the scattering of transverse photon in configura-
tions of spatially small size. In this case the contribution of small pt region (Aligned Jet Model
contribution) is comparable to the pQCD one. The main interest in this paper is in the region
of high energies (HERA and beyond) i.e. sufficiently small x̃, and small Q2, where pQCD con-
tribution dominates because of the rapid increase of the gluon distribution with the decrease of
x. We include a contribution of the aligned jet configurations by imposing a cutoff in transverse
momenta (see below for the details).

The pQCD contribution into the total cross section initiated by the transverse photon has
the form:

σT = 6π
παe.m.

∑
e2qF

2

12

×
∫ 1

0
dz

∫
dk2

tαs(4k
2
t )(z

2 + (1− z)2)
(k4
t +Q4z2(1− z)2)

(k2 +Q2z(1− z))4
· g(x̃, 4k2

t ).

(10)

In the numerical calculations using Eq. 10 we introduced a cutoff in the space transverse mo-
menta M2z(1− z) ≥ u, u ∼ 0.35 GeV2. The contribution of smaller k2

t in the total crosssection
was calculated using the AJM model.

3 The characteristic transverse momenta in hard fragmentation processes in LO approx-
imation.

Here we carry out the calculations for realistic energies and realistic structure functions. The
numerical results indicate that the effects discussed above are manifest even at the energies of
the order s ∼ 105 ÷ 107 GeV2. We want to draw attention that our main qualitatively new
result-the increase of the parton transverse momenta in the current fragmentation region should
be valid in NLO, NNLO approximations as well because its derivation uses specific property of
DGLAP approximation to pQCD -a larger virtuality leads to a more rapid increase of amplitude
with energy. We will also consider the extrapolation of our results to energies of the order s ∼
107GeV2. These energies are unattainable at existing facilities. The proposed e-p collider at
LHC may reach the invariant energies of order 106 GeV2. However these results are interesting
from the theoretical point of view- probing the limits of the pQCD. The relation of our results to
the processes at the LHC will be discussed in the last section.

Challenging and unresolved problem is how to use resummation methods at extremely
small x [20, 21] to evaluate dependence on energy of parton distribution in the current fragmen-
tation region. At x achieved at HERA account of the energy-momentum conservation restricts



the number of possible gluon emissions by one-two. Such emissions are correctly accounted for
within NLO, NNLO DGLAP approximation. One can substantiate this point by evaluation of
the number of radiated gluons in the multiRegge kinematics [13]. At extremely small x where
number of gluon radiations would be sufficiently large and therefore essential impact parame-
ters would exceed radius of a nucleon the intercept of pQCD Pomeron may become independent
on Q2 as a result of diffusion in the space of transverse momenta. This interesting problem is
beyond the scope of this paper.

3.1 The longitudinal photons.
In the case of longitudinal photons we have considered the characteristic median/average trans-
verse momenta scale, that corresponds to the half of the total crosssection σL. This scale is deter-
mined from Eq. 9 by first integrating over z for given kt, and then analyzing the corresponding
jet distribution. In Figure 1 we present the characteristic graphs for the ratio

R(k2
t ) =

σ(k2
t )

σL
, (11)

where σ(k2
t ) corresponds to the result of integration of Eq.9 over transverse momenta ≤ k2

t . We
see from Fig. 1, that for fixed kt R(kt) slowly increases with the increase of the energy. The
results based on using CTEQ5 parametrization are qualitatively similar, although the increase of
median k2

t with the energy is more rapid. The energy dependence of median k2
t can be described

with a very good accuracy by an approximate formula (x/0.01)0.04+0.025 log(Q2/Q2
0). Here Q2

0 =
10 GeV2,x0 ∼ 0.01. The power increases from ∼ 0.04 at Q2 ∼ 5 GeV2, to 0.09 at Q2 ∼ 100
GeV2. For CTEQ5 this power increases to 0.1 at Q2 = 100GeV 2 instead of 0.09. This is
consistent with the enhanced rate of the increase of CTEQ5 structure functions as compared to
the CTEQ6 ones (see below).

These results allow us to estimate the scales, where one expects the appearance of the new
QCD regime, i.e. one has to use the kt factorization approach. Indeed, the DGLAP approxi-
mation is based on the strong ordering in all rungs of the ladder, in particular in the first rung
(the impact factor in the 4kt factorization language ) we must have 4Λ2

QCD ≤ 4k2
t ≤ Q2. It is

clear, this ordering can not hold, once the median 4k2
tm becomes of order Q2. Then we obtain

the condition (using CTEQ6 distribution functions):

4a(Q2)/(x/0.01)0.04+0.025 log(Q2/Q2
0) ∼ Q2. (12)

Here the function a corresponds to the transverse momenta at x = 0.01.

The numerical calculations show that for Q2 = 5 GeV2 one gets from eq. 12 x ∼ 10−4,
for Q2 = 10 GeV2 one gets x ∼ 10−6, which may be reached at LeHC. For larger Q2 we are
however beyond the realistic energies: say for Q2 ∼ 20 GeV2 we need x ∼ 10−9. The use of
CTEQ5 gives qualitatively the same results (for Q2 = 30 GeV2 we obtain x ∼ 10−8. Thus we
may hope to observe the onset of the new regime for the kt dependence analyzing small x jet
distributions at LeHC/LHC. rations.



3.2 Transverse photons
We performed the numerical analysis for the transverse photons using eqs. 9,10 in the same fash-
ion as for the longitudinal photons. In Figure 2 we depicted the characteristic function R(k2

t )
given by Eq. 11 that gives the characteristic momenta as a function of x for several different val-
ues of Q2. The characteristic energy dependence for median k2

t is (x/0.01)0.09+0.014 log(Q2/Q2
0)

where x0 = 0.01, Q2
0 = 10 GeV2. The curves in Fig. 2 clearly show that the characteristic

momenta increase with the increase of 1/x, as the corresponding curves slowly shift to the right.

We see that the average transverse momenta for longitudinal photons is significantly larger
than for transverse photons. On the other hand, the invariant masses for transverse photons
are always significantly larger than 4k2

t . This is due to the large contribution of the AJM type
configurations with z ∼ 0, 1 (z is the fraction of the total momentum of the dipole carried by
one of its constituents). Since M2 = k2

t /(z(1 − z)), a more slow increase of M2 than of k2
t

is consistent with the slow increase of average z towards 1/2, i.e. the symmetric configurations
become dominant, but only at asymptotically large energies.

Once again, we can estimate the boundary of the region where the direct DGLAP ap-
proach stops being self-consistent. Assuming k2

t ∼ Q2/4, we obtain that the boundary for
Q2 = 3, 5, 10 GeV2 is reached at x ∼ 10−3, 10−4, 10−6. For higher Q2 this boundary lies at
unrealistically high energies. The use of the CTEQ5 parametrization gives qualitatively the same
results.

So far we considered only perturbative QCD contribution, and the median transverse mo-
mentum was determined relative to the total perturbative crosssection, i.e. the one starting from
the cut off u = 0.35 GeV2. It is well known that even at HERA energies the contribution of
AJM into the total crosssection is significant. The corresponding AJM contribution to the total
crosssection is given in fig. 3a. Note that the median k2

t at small virtualities at HERA energies
significantly decreases if we calculate it using the crosssection that includes both the pQCD and
soft (AJM) contributions. For example, at Q2 ∼ 10 GeV2 the median transverse momentum
squared decreases by almost a factor of two down to k2

t ∼ 0.65 GeV2.

4 Deeply virtual Compton scattering.

As the application of the formulae obtained in this paper we shall consider the DVCS processes
γ + p → γ∗ + p. We shall show that the slow increase in the median transverse momenta leads
to the slow decrease of the ratio R = ADVCS/ACS with energy to the limiting value equal one.

The DCVS amplitude is described in pQCD by the same formula 10 as the amplitude
describing total cross section of DIS at given x,Q2 but with the substitution in Eq.7 of the wave
function of virtual photon by wave function of a real photon, i.e. Q2 = 0.

As a result in pQCD R has the form :

RpQCD =
∫ 1
0 dz

∫
dM2αs(M2z(1− z))(1/(M2 +Q2)2) · g(x̃,M2).∫ 1

0 dz
∫
dM2αs(M2z(1− z))((M4 +Q4)/(M2 +Q2)4)) · g(x̃,M2).

(13)

Let us note that strictly speaking, we must use the generalized parton distributions (GPD)
in Eq. 13. However the difference between gluon GPD and gluon pdf is not large in this case



because fractions carried by gluons in GPD differ by the factor ≈ two at moderate x and tend to
one at extremely large energies as the consequence of increase of parton momenta with energy.
(In fact most of the non-diagonal effect in this approach is included in the wave functions of the
initial and final photons.) As a result we may neglect the difference between GPD and distribution
functions in the considered kinematics. The numerical analysis of Eq. 13 shows that indeed the
ratioR very slowly decreases with the increase of energy due to a slow increase of a ratioM2/Q2

discussed in the previous section, and R ∼ 1.6 for HERA energies.

The result Eq. 13 is however not complete since we neglected the contribution of the AJ
configurations. In this paper we take them into account using the AJM model [37] (and references
therein, see also Appendix B of this paper). Indeed as we see from Fig. 3a, the AJ configurations
give a substantial contribution to the total crosssection of the DIS of the transverse photons. We
refer the reader to appendix B and ref. [24] for the discussion of main properties of the AJM.
We see that the AJM contribution to the total crosssection is of order 70% at Q2 ∼ 1 GeV2,
x ∼ 0.01.

Rough estimate gives
RAJM ≈ 2, (14)

since the major difference in the amplitudes describing total cross section of DIS and DCVS is in
the difference between the wave functions of the virtual and real photons-the factor Q

2+M2

Q2 ≈ 2.
But in the essential region of integration M2 ≈ Q2. In the framework of the AJM model the
ratio of amplitudes of the DVCS to DIS can be calculated within the leading twist approximation
as:

RAJM =
Q2 +m2

0

Q2
log(1 +

Q2

m2
0

). (15)

Here the parameter m2
0 = 0.3− 0.5 GeV2 is the cut off parameter m2

0 ≤ m2
ρ, mρ is the ρ meson

mass.

Combining the pQCD and AJ model contributions we have

R =
RpQCDσT +RAJMσAJM

σT + σAJM
. (16)

Here the pQCD contribution into the total crosssection σT is given by Eq. 10 and the
contribution of AJ to the total crosssection is given by AJM - Eq. 15. The results of numerical
calculation as a function of x for several values ofQ2 are depicted in Fig. 3b. The ratio R is close
to 2 at HERA energies and increases with Q2 (from 5 to 100 GeV2 by ∼ 40%). This result is in
a good agreement with the analysis of the H1 and ZEUS data in Ref. [15] (see in particular Table
4 in Ref. [15]). Our main prediction is that the ratio R should decreases with the rise of energy.
It tends to one at asymptotically large energies in agreement with the result for the BDR [25].
However the onset of this regime is very slow. This prediction can be checked experimentally in
the study of DVCS processes at LHeC.

Our conclusion on the important role of AJM contribution in DVCS at HERA energies is
in the qualitative agreement with the recent experimental data [16] that shows the important role
of soft QCD in the diffractive processes in DIS at HERA.



We want to draw attention that agreement between experimental results and theoretical
prediction is rather good. This is due to the fact that the interaction of dipole effectively includes
the NLO corrections since parton distributions were obtained by fitting the experimental data.
Consequently one may hope that NLO corrections to impact factors are relatively small.

Let us stress that the current calculation is preliminary. More detailed calculation should
account for the contribution of c-quark, and study in detail the dependence of R on the AJM
parameters).

5 The shape of the fast nucleon and nuclei.

The coherence length lc corresponds to the life-time of the dipole fluctuation at a given energy
in the rest frame of the target. Within the parton model approximation the coherence length is
lc ∼ 1/2mNx [26] i.e. it linearly increases with energy. In pQCD as a result of QCD evolution
coherence length increases with energy more slowly [27, 28]:

lc = (1/2mNx)(s0/s)λ. (17)

Such energy dependence of the coherence length shows that the wave function of a fast hadron
differs in QCD from that in the Gribov picture [17] .

Let us consider the longitudinal distribution of the partons in a fast hadron. In the parton
model the longitudinal spread of the gluonic cloud is Lz ∼ 1/µ for the wee partons (where µ is
the soft scale) and it is much larger than for harder partons, with Lz ∼ 1/xPh for partons carry-
ing a finite x fraction of the hadron momentum [17]. The picture is changed qualitatively in the
limit of very high energies when interactions reach BD regime for kt � µ. In this case the small-
est possible characteristic momenta in the frame where hadron is fast are of the order kt(BDR)
which is a function of both initial energy and transverse coordinate, b of the hadron. Correspond-
ingly, the longitudinal size is ∼ 1/kt(BDR)� 1/µ. There is always a tail to the much smaller
momenta all the way down to kt ∼ µ which corresponds to the partons with much larger longi-
tudinal size (a pancake of soft gluons corresponding to the Gribov’s picture). However at large
energies at the proximity of the unitarity limit the contribution of the gluons with kt < ktb is
strongly suppressed . In the BDR this tail is suppressed by a factor k2

t /kt(BDR)2 [12, 30]. In
the color glass condensate model the suppression is exponential [31].

Since the gluon parton density decreases with the increase of b the longitudinal size of the
hadron is larger for large b, so a hadron has a shape of biconcave lens, see Figs. 4(a),4(b)

In the numerical calculation we took

|lz| = 1/kt(BDR), (18)

neglecting overall factors of the order of one (typically in the Fourier transform one finds 〈z〉 ∼
π
〈pz〉 ). We calculated kt(BDR) for fixed external virtuality Q2

0 ∼ 40GeV 2. Our results are not
sensitive to the value ofQ2

0, as the value ofQ2 only enters in the combination x′ = (Q2
0+M2)/s,

and the k2
t we found were comparable or larger than Q2

0/4. Indeed, the direct calculation shows
that for small b the change of 1/kt if we go between external virtualities of 60 and 5 GeV2 is
less than 5%. Such weak dependence continues almost to the boundary of the picture Fig. 4a,



where kt ∼ 1 GeV. Near the boundary the uncertainty increase to ∼ 25%, meaning that for large
b (beyond those depicted in Fig. 4a) the nucleon once again becomes a pancake and there is a
smooth transition between two pictures ( biconcave lens and pancake). We want to emphasize
here that the discussed above weak dependence of kt(BDR) on the resolution scale indicates
that the shape of the wave function for small x is almost insensitive to the scale of the probe.

We depict the typical transverse quark structure of the fast nucleon in Fig. 4a. We see that
it is drastically different from the naive picture of a fast moving nucleon as a flat narrow disk with
small constant thickness. (Similar plot for the gluon distribution is even more narrow). Note also
that for the discussed small x range kt ≥ 1GeV/c for b ≤ 1fm. Since the spontaneous chiral
symmetry breaking corresponds to quark virtuality µ2 ≤ 1GeV 2, probably ∼ 0.7GeV 2 [33],
corresponding to kt ∼

√
2
3µ

2 ∼ 0.7GeV/c the chiral symmetry should be restored for a large
range of b in the proton wave function for small x.

Let us consider the DIS on the nuclei for the case of external virtualities of the order of
several GeV. In this case the shadowing effects to the large extent cancel the factor A1/3 in the
gluon density of a nucleus for a central impact parameters, b [32], and the gluon density in the
nuclei is comparable to that in a single nucleon for b ∼ 0. Consequently over the large range of
the impact parameters the nucleus longitudinal size is approximately the same as in the nucleon
at b ∼ 0.

However for very small x we find large kt(BDR) corresponding to 4k2
t (BDR) ≥ 40

GeV2. This is a self consistent value as indeed for such Q2 the leading twist shadowing is small.

Accordingly we calculated the shape of the nucleus for the external virtuality Q2 ≥ 40
GeV2. We should emphasize here that taking a smaller virtuality would not significantly change
our result for kt(BDR) (at the same time LT nuclear shadowing reduces a low momentum tail
of the kt distribution as compared to the nucleon case).

In the discussed limit of the small leading twist shadowing, the corresponding gluon den-
sity unintegrated over b is given by a product of a nucleon gluon density and the nuclear profile
function:

T (b) =
∫
dzρ(b, z), (19)

where the nuclear three-dimensional density is normalized to A. We use standard Fermi step
parametrization [34]

ρ(r) = C(A)
A

1 + exp((r −RA)/a)
, RA = 1.1A1/3fm, a = 0.56fm. (20)

Here r =
√
z2 + b2, and A is the atomic number. C(A) is a normalization factor, that can

be calculated numerically from the condition
∫
d3rρ(r) = A. At the zero impact parameter

T (b) ≈ 0.5A1/3 for large A.

The dependence of the thickness of a fast nucleus as a function of the transverse size is
depicted in Fig. 4b for a typical high energy s = 107 GeV2, Q2 = 40 GeV2. We see that the
nuclei also has a form of a biconcave lens instead of a flat disk. The dependence on the external
virtuality for the nuclei is qualitatively very similar to the case of the nucleon. For small b the
dependence is very weak (of order 5%) and increases only close to the boundary of the biconcave



lens region where it is of order 20% ( and kt ∼ 1 GeV). For larger b we smoothly return to the
pancake picture.

Note that this picture is very counterintuitive: the thickness of a nucleus is smaller than
of a nucleon in spite of ∼ A1/3 nucleons at the same impact parameter. The resolution of the
paradox in the BD regime is quite simple: the soft fields of individual nucleons destructively
interfere cancelling each other. Besides for a given impact parameter b, the longitudinal size
of a heavy nucleus 1/k(A)

t (BDR) < 1/k(p)
t (BDR) since the gluon distribution function in the

nuclei GA(x, b) > GN (x, b). So a naive classical picture of a system build of the constituents
being larger than each of the constituents is grossly violated. The higher density of partons leads
to the restoration of the chiral symmetry in a broad b range and much larger x range than in the
nucleon case.

6 Experimental consequences.

The current calculations of the cross sections of the hard processes at the LHC are based on the
use of the DGLAP parton distributions and the application of the factorization theorem. Our
results imply that in the kinematical region of sufficiently small x it is necessary to use the kt
factorization and the dipole model, instead of the direct use of DGLAP.

A similar analysis must be made for the pp collisions at LHC. It has been understood long
ago that the probability of pp collisions at central impact parameter is close to 100% (total Γ
is close to 1) even for soft QCD, i.e. at lesser energies than those necessary to achieve BDR
for the hard interactions. The compatibility of probability conservation with the rapid increase
of hard interactions with energy , predicted by QCD, requires the decrease of importance of
soft QCD contribution with energy [36]. As a result the hadronic state emerged in pp, pA,
AA collisions at sufficiently large energies consists of two phases. Central collisions would be
dominated by the strong interaction with small coupling constant - the phase with unbroken chiral
and conformal symmetries. On the contrary, the peripheral collisions are dominated by the more
familiar phase with broken chiral and conformal symmetries. At these energies the QCD phase
at central collisions - with the unbroken chiral and conformal symmetries -will be different from
that for the peripheral collisions. This new phenomenon may appear especially important for the
central heavy ion collisions at LHC and at RHIC. Quantitative analysis of this problem will be
presented elsewhere.

The hard processes initiated by the real photon can be directly observed in the ultraphe-
ripheral collisions [35]. The processes where a real photon scatters on a target, and creates two
jets with an invariant mass M2, can be analyzed in the dipole model by formally putting Q2 = 0,
while M2 is an invariant mass of the jets. In this case with a good accuracy the spectral density
discussed above will give the spectrum of jets in the fragmentation region. Our results show that
the jet distribution over the transverse momenta will be broad with the maximum moving towards
larger transverse momenta with increase of the energy and centrality of the γA collision.

We have seen that our results can also describe DCVS processes. The ratio R of DCVS
γ∗ → γ∗ and forward amplitudes at t = 0 is of order 2 at HERA energies at small external
virtualities, and rapidly growing with Q2. This ratio slowly decreases with the decrease of x.

Finally, our results can be checked directly, if and when the LHeC facility will be built at



CERN.

More detailed version of this work can be found in Ref. [38]
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Fig. 1: The ratio R(k2
t ) for longitudinal photons for different values of Q2 and x.
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