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Abstract

We summarize two procedures for determining spin and parity of the Higgs boson(s)
in the Standard Model and related extensions unambiguously in a model indepen-
dent way. One is to study the excitation curve near threshold and the angular
distribution in Higgs–strahlung, e+e− → ZH and the other to exploit the decay,
H → ZZ. In the latter process with a Higgs mass above the on-shell ZZ threshold,
a complete model–independent analysis can be performed only by using additional
angular correlation effects in gluon–gluon fusion at the LHC and γγ fusion at linear
colliders. In the intermediate mass range, in which the Higgs boson decays into pairs
of real and virtual Z bosons, threshold effects and angular correlations, parallel to
Higgs-strahlung, can be adopted to determine spin and parity.

1 Introduction

The Higgs boson in the Standard Model (SM) must necessarily be a scalar particle, as-
signed the external quantum numbers J PC = 0++; extended models such as CP–invariant
supersymmetric theories also contain these pure scalar states. The assignment of the
quantum numbers invites investigating experimental opportunities to identify spin and
parity of the Higgs state at future high–energy colliders, see Refs.[1] and [2]. The determi-
nation of the parity and the parity mixing of spinless Higgs bosons have been extensively
investigated in Refs.[3, 4].

In this talk we summarize methods for identifying the spinless nature and the positive
parity of the Higgs boson unambiguously in Higgs–strahlung [1] and the decay process [2]:

e+e− → ZH and H → ZZ (1)

These processes involve clean µ+µ− and e+e− subsequent decay channels of the Z bosons
for isolating the signal processes from the background and allowing a complete reconstruc-
tion of the kinematical configuration with good precision. Note that while the dominant
decay mode for Higgs masses below ∼ 140 GeV is the bb̄ decay channel, the ZZ mode,
one of the vector bosons being virtual below the threshold for two real Z bosons, becomes
leading for higher masses next to the WW decay channel.

2 General description

Without loss of generality, the Higgs state H can be assumed to be emitted from the
Z–boson line. Were it emitted from the lepton line, the required Hee coupling would be
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so large that the state could have been detected as a resonance at LEP, e+e− → H(γ).
The most general form of the HZZ vertex is given by the expression

T =
g

W
MZ

cos θW

Tµνβ1...βJ Zµ
1 Z

ν
2 H

β1...βJ (2)

While Zµ
1 and Zν

2 are the usual spin–1 polarization vectors, the spin–J polarization tensor
Hβ1...βJ , constructed from products of suitably chosen polarization vectors, is symmetric,
traceless and orthogonal to the 4–momentum of the Higgs boson pβi. The standard
coupling is split off explicitly such that Tµν is normalized to be gµν in the SM. Moreover,
with the assumption of massless leptons in the initial or final states, Tµνβ1...βJ is transverse
due to the conservation of the lepton currents, strongly constraining the form of the tensor.

Equivalent to the covariant description with the tensor Tµνβ1...βJ , the helicity formalism
is the most convenient theoretical tool for defining observables which uniquely prove the
scalar nature of the Higgs boson(s). In general, the basic helicity amplitudes [5] of the
Higgs–strahlung and decay processes (1) for arbitrary H spin–J , with the azimuthal
angles set to zero, can be denoted by

〈Z(λ2)H(λH)|Z∗(λ1)〉 =
g

W
MZ

cos θW
Γλ2λH

d1
λ1, λ2−λH

(θ); (3)

〈Z(∗)(λ1)Z(λ2)|H(λH)〉 =
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MZ

cos θW
Tλ1λ2 d

J
λH , λ1−λ2

(θ) (4)

respectively. No dependence of the reduced vertices Γλ2λH
and Tλ1λ2 on the Z∗ spin

component λ1 and the H spin component λH is guaranteed by rotational invariance.
The polar angle θ in Higgs–strahlung defines the momentum direction of the Z boson
with helicity λ2 with respect to the beam axis while the angle θ in the decay defines the
polarization axis in the coordinate system with the momentum of the Z(∗) boson with
helicity λ1 along the positive z–axis. The general helicity amplitudes and tensors for spins
≤ 2 can be found in Refs.[1] and [2], respectively.

The normality of the Higgs state, nH = (−1)J P, the product of the spin signature
(−1)J and the parity P, connects the helicity amplitudes under parity transformations.
If the vertex (2) are P invariant, equivalent to CP invariance in this specific case, the
reduced vertices are related,

Γλ2λH
= nH Γ−λ2,−λH

; Tλ1λ2 = nH T−λ1,−λ2 (5)

In addition, the helicity amplitudes Tλ1λ2 are restricted further above the threshold of two
real Z bosons by Bose symmetry; Tλ1λ2 = (−1)J Tλ2λ1, independently of the parity of the
H state.

In the SM the helicity amplitudes of Higgs–strahlung and the decay H → Z(∗)Z read

Γ00 = −EZ

MZ
, Γ10 = −1, Γ01 = Γ11 = Γ12 = 0 (6)

T00 =
M2

H −M2
Z −M2

∗
2MZM∗

, T11 = −1, T10 = T01 = T1,−1 = 0 (7)
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with M∗ the invariant mass of the Z∗ boson, being MZ if Z∗ becomes real, and the SM
Higgs boson carries even normality: nH = +1.

The threshold behaviors in Higgs–strahlung and the decay H → Z∗Z with one virtual
Z boson, which will play a key role in establishing the spin–parity of the Higgs boson(s),
are determined by the leading β dependence of the helicity amplitudes with β, the Z
three–momentum in the center of mass frame and in the H rest frame, respectively. The
dependence can be worked out by counting the number of momenta in each term of the
tensor Tµνβ1...βJ . Each momentum contracted with the Z–boson polarization vector or the
H polarization tensor gives zero or one power of β. Furthermore, any momentum con-
tracted with the lepton current also gives rise to one power of β due to the transversality
of the current. The overall β dependence can be derived from the squared β dependence
of the helicity amplitude multiplied by a single factor β from the phase space.

Based on the general description of the HZZ vertex, we will demonstrate in the
consecutive sections the unique spin–parity determination of the Higgs boson(s) for a CP
invariant theory, for even and odd normality Higgs bosons in Higgs–strahlung e+e− → ZH
and the decay process H → ZZ. The analyses can straightforwardly be extended to mixed
parity assignment in CP noninvariant theories.

3 Higgs–strahlung

3.1 Characteristic observables

The total cross section for Higgs–strahlung in a CP invariant theory is given in terms of
the reduced vertex Γλ2λH

by

σ(e+e− → ZH) ∼ β
[
|Γ00|2 + 2(|Γ11|2 + |Γ01|2 + |Γ10|2 + |Γ12|2)

]
(8)

In the SM with the helicity amplitudes (6) the cross section rise linearly with β, i.e., steeply
with the center of mass energy above the threshold: σH ∼ β ∼ [s− (MH +MZ)2]1/2. This
steep rise is characteristic of the production of a scalar particle in conjunction with the
Z boson (with only two exceptions as discussed below).

The distribution of the polar angle θ can in general be written

dσ

d cos θ
∼ sin2 θ

(
|Γ00|2 + 2|Γ11|2

)
+ (1 + cos2 θ)

(
|Γ01|2 + |Γ10|2 + |Γ12|2

)
(9)

The SM distribution, dσH/d cos θ ∼ β2 sin2 θ+ 8M2
Z/s, is isotropic near the threshold and

it approaches ∼ sin2 θ at high energies, congruent with the equivalence theorem.

Other independent information on the helicity of the Z state is encoded in the final–
state fermion distribution in the decay Z → f f̄ . Denoting the fermion polar angle in
the Z rest frame with respect to the Z flight direction in the laboratory frame by θ∗, the
general form of the double differential distribution in θ and θ∗ reads

d σ

d cos θd cos θ∗
∼ sin2 θ sin2 θ∗|Γ00|2
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+
1

2

[
(1 + cos2 θ)(+ cos2 θ∗)

(
|Γ10|2 + |Γ12|2

)
+ 4ηeηf cos θ cos θ∗

(
|Γ10|2 − |Γ12|2

)]

+ sin2 θ(1 + cos2 θ∗)|Γ11|2 + (1 + cos2 θ) sin2 θ∗|Γ01|2 (10)

where ηf = 2vfaf/(v2
f +a2

f ) with the electroweak charges vf = 2I3f −4ef sin2 θW and af =
2I3f of the fermion f . The SM correlated angular distribution has no sin2 θ(1 + cos2 θ∗)
and no (1+cos2 θ) sin2 θ∗ terms and approaches ∼ sin2 θ sin2 θ∗ for high energies, reflecting
the longitudinal Z polarization in the asymptotic limit.

3.2 Selection rules

States of even normality J P = 1−, 2+, 3−, . . . can be excluded by measuring the threshold
behaviour of the excitation curve and the angular correlations:

Spin 1: All helicity amplitudes vanish near threshold linearly in β, so the excitation
curve rises ∼ β3, distinct from the SM.

Spin 2: The most general spin–2 tensor contains a term with no momentum dependence,
resulting in non–zero helicity amplitudes at threshold. However, Γ01 and Γ11 are non–zero
in this case, leading to non–trivial (1 + cos2 θ) sin2 θ∗ and sin2 θ(1 + cos2 θ∗) correlations in
Eq.(10) which are absent in the SM. Therefore, if the excitation curve rises linearly, not
observing these correlations rules out the spin–2 assignment to the H state. If the term
in the spin–2 case vanishes, the excitation curve rises ∼ β5 near threshold.

Spin≥ 3: Above spin–2 the number of independent helicity amplitudes does not increase
any more [5] and the most general spin–J tensor Tµνβ1...βJ is a direct product of a ten-

sor T
(2)
µνβiβj

isomorphic with the spin–2 tensor and a symmetric tensor built up by the

momentum vectors qβk = (pZ + pH)βk as required by the properties of the spin–J wave–
function Hβ1...βJ . Contracted with the wave–function, the extra J –2 momentum give rise
to a leading power βJ−2 in the helicity amplitudes. The cross section therefore rises near
threshold ∼ β2J−3, i.e., with a power ≥ 3, in contrast to the single power of the SM.

It is quite easy to rule out particles of odd normality: J P = 0−, 1+, 2−, . . .. Since the
helicity amplitude Γ00 must vanish by the CP relation (5), the observation of a non–zero
sin2 θ sin2 θ∗ correlation, as predicted by the SM, eliminates all odd normality states. We
find a similar picture to the even normality case, where the excitation curve only presents
a linear rise for a particle of spin–1. The generalization to higher spins ≥ 3 follows exactly
as before, resulting in an excitation curve ∼ β2J−1, i.e., with a power ≥ 5, at threshold.

4 Higgs decays to Z pairs

4.1 Characteristic observables

The key observables for measuring the spin–parity of the Higgs boson(s) are the invariant
mass (M∗) spectrum of the off–shell Z boson in the decay H → Z∗Z and the angular
distributions of the final–state fermions in the decays Z(∗) → f f̄ , encoding the helicities
of the Z(∗) states. The combined polar and azimuthal angular distributions are presented
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in the Appendix of Ref.[2].

Below the threshold of two real Z bosons, the invariant mass (M∗) spectrum of the off–
shell Z boson is maximal close to the kinematical limit corresponding to zero momentum
of the off– and on–shell Z bosons and it decreases linearly with β, i.e., steeply with the
invariant mass just below the threshold: dΓH/dM

2
∗ ∼ β ∼ [(MH −MZ)2 −M 2

∗ ]1/2. This
steep decrease is characteristic of the decay of a scalar particle into two vector bosons
(with only two exceptions as discussed below).

H ZZ

f1

f̄1

f2

f̄2

θ1θ2

ϕ

Figure 1: The definition of the polar angles θi (i = 1, 2) and the azimuthal angle ϕ for
the sequential decay H → Z(∗)Z → (f1f̄1)(f2f̄2) in the rest frame of the Higgs particle.

Polar and azimuthal angular distributions give independent access to spin and parity
of the Higgs boson. Denoting the polar angles of the fermions f1, f2 in the rest frames of
the Z bosons by θ1 and θ2, and the azimuthal angle between the planes of the fermion
pairs by ϕ [ see Fig. 1], the polar–angle distributions for a CP invariant theory can be
written as

dΓ

d cos θ1d cos θ2

∼ sin2 θ1 sin2 θ2 |T00|2 +
1

2
(1 + cos2 θ1)(1 + cos2 θ2)

[
|T11|2 + |T1,−1|2

]

+(1 + cos2 θ1) sin2 θ2 |T10|2 + sin2 θ1 (1 + cos2 θ2) |T01|2

+2 η1η2 cos θ1 cos θ2

[
|T11|2 − |T1,−1|2

]
(11)

while the general azimuthal angular distribution reads

dΓ

dϕ
∼ |T11|2 + |T10|2 + |T1,−1|2 + |T01|2 + |T00|2/2

+η1η2

(
3π

8

)2


e(T11T
∗
00 + T10T

∗
0,−1) cosϕ +

1

4

e(T11T

∗
−1,−1) cos 2ϕ (12)

The SM polar–angle distributions with the helicity amplitudes (7) approach ∼ sin2 θ1 sin2 θ2

for large Higgs masses, reflecting the longitudinal Z polarization [4]. Also any ϕ depen-
dence disappears in this limit.
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4.2 Selection rules

4.2.1 Heavy Higgs bosons

Since the helicity amplitude T00 must vanish by the CP relation (5) for odd normality,
observing a non-zero ∼ sin2 θ1 sin2 θ2 correlation as predicted by the SM, eliminates all
odd–normality states.

In the chain of even-normality states, the odd-spin states 1−, 3−, . . ., can easily be
excluded by observing the sin2 θ1 sin2 θ2 correlation induced by T00 in the Standard Model,
but forbidden by Bose symmetry for even-normality odd-spin states.

In general, the vertex for the higher even–J Higgs state will lead to four–fermion an-
gular correlations different from those for the spin–0 case. If Tµνβ1...βJ =

[
TJ=0

µν

]
kβ1...kβJ

[with k = k1−k2], however, the unpolarized higher even–J state generates the same angu-
lar correlations of the Z decay products as the spin–0 state. Thus, from final-state distri-
butions alone, a model–independent spin–parity analysis cannot be carried out. However,
special production mechanisms such as gg → H at LHC [6] and γγ → H in the Comp-
ton mode of linear colliders [7] can be successfully exploited to close the gap. Assuming
the HZZ coupling to be of the special form, the polar–angle distribution for the process
gg/γγ → H → ZZ is given by the differential cross section

dσ

d cos θ
[ gg/γγ → H → ZZ] ∼ |a1|2

[
P 0
J (cos θ)

]2
+ 12|a2|2

[
P 2
J (cos θ)

]2
(13)

where a1, a2 are two independent form factors describing the general spin–J tensor for the
ggH or γγH coupling [2] and θ is the polar angle between the momenta of a gluon/photon
and a Z boson in the gg/γγ center–of–mass frame. The associated Legendre functions
P2

J and P0
J have non-trivial cos θ dependence except for J = 0. Thus, the zero–spin

of the Higgs boson can be checked through the lack of the polar (and azimuthal) angle
correlations between the initial state and final state particles in the combined process,
gg/γγ → H → ZZ.

4.2.2 Intermediate Higgs-mass range

The spin–parity analysis in Higgs decays to a pair of virtual and real Z bosons, H → Z∗Z,
runs parallel in all elements to the same task in Higgs-strahlung at e+e− colliders – just
requiring the crossing of the virtual Z-boson line from the initial to the final state.

For the same arguments as before, the states of odd normality can be excluded if a
non-zero ∼ sin2 θ1 sin2 θ2 correlation has been established experimentally. Equivalently,
the high power suppression of the virtual mass distributions near the threshold rules
out all spin ≥ 2 states; the state J = 1 can be eliminated by non-observation of ∼
(1 + cos2 θ1) sin2 θ2 and sin2 θ1 (1 + cos2 θ2) correlations.

Below the threshold of two real Z bosons, the states of even normality can be excluded
by measuring the threshold behaviour of the invariant mass spectrum and the angular
correlations.

Spin 1: Every helicity amplitude vanishes near threshold linearly in β, so the invariant
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mass spectrum decreases ∼ β3, distinct from the SM.

Spin 2: A momentum–independent term, T µνβ1β2 ∼ gµβ1gνβ2 + gµβ2gνβ1, resulting in
non–zero helicity amplitudes at threshold, generates the helicity amplitudes T10 and T01,
leading to non-trivial (1 + cos2 θ1) sin2 θ2 and sin2 θ1(1 + cos2 θ2) correlations absent in the
SM. Therefore, if the invariant mass spectrum decreases linearly not observing these polar–
angle correlations rules out the spin–2 assignment to the state. Without this peculiar term
in the spin-2 case, the spectrum falls off ∼ β5 near threshold.

Spin ≥ 3: Contracted with the wave–function, the extra J − 2 momenta in the general
spin–J tensor Tµνβ1...βJ give rise to a leading power βJ−2 in the helicity amplitudes. The
invariant mass spectrum therefore decreases near threshold ∼ β2J−3, i.e. with a power
≥ 3, in contrast to the single power of the SM.

5 Conclusions

The spin–parity analyses described above can be briefed in a few characteristic points.

In Higgs–strahlung at e+e− linear colliders the rise of the excitation curve near the
threshold and the angular distributions render the spin–parity analysis of the Higgs boson
unambiguous.

Complementary to the spin–parity measurements in Higgs–strahlung, Higgs decays
to Z bosons can provide us with a clear picture of these external quantum numbers for
Higgs masses above the ZZ threshold, if auxiliary angular distributions are included that
are generated in specific production mechanism such as gluon fusion at the LHC and γγ
fusion at linear colliders. Below the mass range for on-shell ZZ decays, threshold analyses
combined with angular correlations in Z∗Z decays [with one of the electroweak bosons,
Z∗, being virtual] can be exploited in analogy to Higgs-strahlung.

The rules can be supplemented by observations specific to two cases. By observing
non–zero Hγγ and Hgg couplings, the J = 1 assignment can elegantly be ruled out by
Yang’s theorem in particular, and for all odd spins in general.

The above formalisms can be generalized easily to rule out mixed normality states
with spin ≥ 1. For a Higgs boson of mixed normality we cannot use Eq.(5) anymore to
derive the simple form of the differential distributions. The analysis for identifying the
spin of the Higgs particle, however, proceeds exactly as before in the fixed normality case,
since the most general vertex will be the sum of the even and odd normality tensors.

Before closing, we note that experimental simulations for the spin–parity determina-
tions have been performed for Higgs decays to Z boson pairs at the LHC in Refs.[2, 8]
and for Higgs–strahlung at linear colliders in Ref.[9].
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