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Abstract

For energies relevant to future linear colliders,
√

s � 500 GeV, the WW fusion
channel dominates the Higgs boson production cross section e+e− → ν̄νh0. We have
calculated the one-loop corrections to this process due to fermion and sfermion loops
in the context of the MSSM. As a special case, the contribution of the fermion loops
in the SM has also been studied. In general, the correction is negative and sizeable
of the order of 10%, the bulk of it being due to fermion loops.

No Higgs boson could be detected so far. The four LEP experiments delivered lower

bounds [1] for the Standard Model (SM) Higgs mass, mh � 114 GeV and the light

CP even Higgs boson mass mh0 � 88.3 GeV of the Minimal Supersymmetric Standard

Model (MSSM). In e+e− collisions, for energies � 200 GeV, the production of a single

Higgs boson plus missing energy starts to be dominated by WW fusion [2, 3, 4], that

is e+e− → ν̄eνe WW → ν̄eνe h0, whereas the Higgsstrahlung process [5] e+e− → Zh0 →
ν̄ν h0 becomes less important. The rates for the ZZ fusion are generally one order of

magnitude smaller than those of the WW channel.

At LHC, in p p collisions, the gluon-gluon fusion mechanism provides the dominant

contribution to Higgs production. Recently, it has been argued that also the channels

WW → h0/H0 → τ τ̄ and WW , can serve as suitable search channels at LHC even for

a Higgs boson mass of mh ∼ 120 GeV [6, 7]. It was also shown [9] that the e p-option

at LHC would offer the best opportunity to search for a Higgs boson in the mass range

mh < 140 GeV with WW (and ZZ) fusion as the most important Higgs boson production

mechanism there. At Tevatron, with p p̄ collisions at 2 TeV, the WW fusion process plays

a less important rôle at least for mh � 180 GeV [8].

This contribution follows Ref. [10] where the leading one-loop corrections to theWWh0

vertex in the MSSM were calculated. Because of their Yukawa couplings, the fermion/sfer-

mion loops are taken into account. Then the total cross section in e+e− annihilation was

worked out for e+e− → ν̄eνe WW → ν̄eνe h0. We also included the Higgsstrahlung process

e+e− → Zh0 → ν̄ν h0 and the interference between these two mechanisms. Because

the Higgsstrahlung process is much smaller in this range, we have neglected its radiative

corrections. We have also discussed the SM case.
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As for energies
√

s > 500 GeV the dominant channel e+e− → ν̄νh0 is by far the WW

fusion, taking into account only (s)fermion loops, the renormalization of the five-point

function simplifies to the renormalization of the WWh0 vertex with off-shell W bosons.

The renormalization of the other two vertices in the process (e. g. the e−νeW
+ coupling)

is absorbed. For the renormalization procedure the on-shell scheme has been adopted.
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Figure 1: The Feynman graphs that contribute to the vertex correction to the form factors
F 00 and F 21 and the wave-function correction to F 00. f (f ′) denotes the up (down) type
fermion.

The one-loop part of the WWh0 coupling can be expressed in terms of all possible

form factors(
∆gh0

WW

)
µν
= F 00gµν + F 11kµ

1 kν
1 + F 22kµ

2 kν
2 + F 12kµ

1 kν
2 + F 21kµ

2 kν
1 + i F εεµνρδk1ρk2δ , (1)

where k1,2 denote the four-momenta of the off-shell W -bosons. The full analytic expres-

sions of the renormalized form factor F 00 and of F 21, which are based on the evaluation

of the Feynman graphs given in Fig. 1 with additional counter terms, can be found in

Ref. [12].
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Figure 2: The Feynman graphs for the process e+e− → ν̄νh0 including the one-loop
correction ∆gh0

WW . Note that for |Mtree
Z |2 one has to sum over all three neutrino flavors.

The Feynman graphs for the one-loop corrected amplitude are drawn in Fig. 2. The

tree-level part of the squared amplitude was already calculated in Ref. [4], and the expre-

sions for the one-loop part, 2�
[
∆MW (Mtree

W )
†
]
and 2�

[
∆MW (Mtree

Z )
†
]
, can be found

in Ref. [10].

For the calculation of the cross section at tree-level, it is possible to perform some of

the phase space integrations analytically and the rest of them numerically [3, 4]. How-

ever, including the one-loop correction terms, it is impossible to perform any of these

integrations analytically [10].

Now let us discuss to the numerical results. The tree-level WWh0 coupling for values

of tanβ > 5 as preferred by the LEP Higgs boson searches, mimics the SM one. For

the calculation of the fermion/sfermion one-loop corrections to the WWh0 vertex, the

contribution of the third family of fermions/sfermions has been taken into account. This

contribution turns out to be the dominant one, in comparison with the first two families

corrections, due to the large values of the Yukawa couplings ht and hb. The effect of the

running of the coupling constants g and g′ has been taken into account.

For simplicity, for all plots we have used At = Ab = Aτ = A, {mŨ , mD̃, mL̃, mẼ} =
{ 9

10
, 11

10
, 1, 1}mQ̃ and M1 =

5
3
M2 tan

2 θW . The choice of a common trilinear coupling and

the correlation between the soft sfermion masses are inspired by unification.

In Fig. 3 the parameters tan β = 10, µ = −100 GeV, A = −500 GeV, mQ̃ = 300 GeV,

MA = 500 GeV, and M2 = 400 GeV are taken. Note that choosing different sets of

parameters, the basic characteristics of these plots remain indifferent. In the left figure

the various cross sections as a function of
√

s for values up to 1 TeV are plotted. The

dotted-dashed line represents the contribution from the WW channel at tree-level alone,

whereas the dotted line includes the Higgsstrahlung contribution as well. The dashed line

comprises in addition the interference between the WW channel and Higgsstrahlung. One

can perceive that the size of this interference term is extremely small, and for this reason
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Figure 3: The various cross sections as functions of
√

s (left). The dotted-dashed line
represents the tree-level cross section σWW

0 , the dotted line σWW
0 + σh−str

0 . The dashed
line includes also the interference term σinterf.

0 and represents the total tree-level cross
section. The solid line includes the one-loop correction. The SUSY parameters are:
tan β = 10, µ = −100 GeV, A = −500 GeV, mQ̃ = 300 GeV, MA = 500 GeV, and
M2 = 400 GeV. For the same set of parameters also the tree-level cross section σ0 and
the one-loop corrected σ are plotted for

√
s up to 3 TeV (right).

the difference between the dotted and dashed lines is rather minute. For
√

s � 500 GeV

the WW fusion contribution dominates the total cross section for the Higgs production

e+e− → ν̄νh0. Actually, for
√

s � 800 GeV the total tree-level cross section is due to

WW fusion. In the solid line we have taken into account the one-loop correction from

the fermion/sfermion loops. The right figure of Fig. 3 shows the tree-level cross section

σ0 (dashed line) and the one-loop corrected cross section σ (solid line) for energies up to

3 TeV. Both figures show that the correction is always negative and in the order of 10%. In

Fig. 4 shows the relative correction ∆σ/σ0 as a function of
√

s. The solid line corresponds
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Figure 4: The relative correction ∆σ/σ0 as a function of
√

s (∆σ = σ − σ0), where σ0

is the tree-level and σ the one-loop corrected cross section. The solid and dashed lines
correspond to two different choices of the SUSY parameters, as described in the text.
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to the set tanβ = 10, µ = −100 GeV, A = −500 GeV, mQ̃ = 300 GeV, MA = 500 GeV,

and M2 = 400 GeV, whereas for the dashed line tanβ = 40, µ = −300 GeV and

A = −100 GeV was taken, keeping the rest of parmeters unchanged. We see that the

size of the one-loop correction to the Higgs production cross section becomes practically

constant for
√

s > 500 GeV and weighs about−15%, almost independently of the choice of
the SUSY parameters. This is due to the fact that the one-loop corrections are dominated

by the fermion loops, and therefore the total correction is not very sensitive to the choice

of the SUSY parameters.
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Figure 5: Cross sections for the SM case, for
√

s = 0.8 TeV (red lines) and 1 TeV (black
lines). The dashed lines correspond to the tree-level cross section, whereas the solid lines
to the one-loop corrected one.

In Fig. 5 we have plotted the cross section as a function of mh for the SM case,

for
√

s = 0.8 TeV (red lines) and 1 TeV (black lines). The dashed lines correspond to

the tree-level cross section for e+e− → ν̄νh0, whereas the solid lines contains the one-

loop correction stemming from the fermion loops. In addition, the couplings have been

adjusted to the SM corresponding couplings. The plot exhibits the expected dependence

of the cross section on mh. What must be noticed is that especially for small Higgs boson

masses � 200 GeV, the size of the fermion loops correction becomes important for the

correct determination of the Higgs boson mass.

Finally, Fig. 6 exhibits the percentage of the sfermion loops to the total one-loop

correction as a function of tanβ (left) and µ (right), for two different values of µ and

tan β, respectively, as shown in the figure. In the left (right) figure A = −100 GeV
(A = −400 GeV). Further we have mQ̃ = 300 GeV, MA = 500 GeV, and M2 = 400 GeV,

and
√

s has been fixed to 1 TeV. The grey area in the right figure is excluded due to the

chargino mass bound. One can see that the maximum value of order 10% can be achieved

for large values of µ and tanβ. There, due to the significant mixing in the stop and

sbottom sector, the contribution of stops and sbottoms in the loops is enhanced. Even
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Figure 6: The percentage of the sfermions to the total one-loop correction as a function of
tan β (left) and µ (right). The rest of the SUSY parameters have been fixed as described
in the text. Here

√
s = 1 TeV. The grey area in the right figure is excluded due to the

chargino mass bound.

for such a parameter set the dominant correction, at least 90% of the total correction, is

due to the fermion loops.

An effective approximation of the one-loop corrections to the WWh0 vertex can be

found in [11], but it does not fully account for the whole effect.

In conclusion, we have calculated the fermion/sfermion loops corrections to the single

Higgs boson production e+e− → ν̄νh0 in the context of the MSSM and SM. They are

supposed to be the dominant radiative corrections. For energies relevant to the future

linear colliders,
√

s � 500 GeV, the WW fusion channel dominates the cross section. In

general, the correction due to fermion/sfermion loops is negative and yields a correction

to the cross section of the order of −10%. The bulk of this correction stems from the

fermion loops, and usually turns to be more than 90% of the total correction. For the

case of maximal mixing in the sfermion mass matrices, the contribution of the sfermion

loops is enhanced, but nevertheless weighs less than 10% of the total one-loop correc-

tion. As the correction is dominated by fermion loops and is rather independent of
√

s

for
√

s > 500 GeV, we think that it can be approximated by a factor correction to the

tree-level cross section. Such an approximation would be most useful for including initial

state radiation (ISR) and beamstrahlung in an efficient way.
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