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Abstract

In the Minimal Supersymmetric Standard Model with complex parameters
(cMSSM) we perform a complete one-loop calculation for the Higgs boson masses
(including the momentum dependence) and the mixing angles. These corrections are
obtained in the Feynman-diagrammatic approach using the on-shell renormalization
scheme. The impact of the newly evaluated corrections is analyzed numerically. The
full one-loop result, supplemented by the leading two-loop contributions taken over
from the real MSSM are implemented into the public Fortran code FeynHiggs2.0.
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1 Introduction

The search for the lightest Higgs boson is a crucial test of Supersymmetry (SUSY) which
can be performed with the present and the next generation of accelerators. The prediction
of a relatively light Higgs boson is common to all supersymmetric models whose couplings
remain in the perturbative regime up to a very high energy scale [1]. A precise prediction
for the mass of the lightest Higgs boson and its couplings to other particles in terms of the
relevant SUSY parameters is necessary in order to determine the discovery and exclusion
potential of LEP2 and the upgraded Tevatron, and for physics at the LHC and future
linear colliders, where eventually a high-precision measurement of the properties of the
Higgs boson might be possible [2].

The case of the Higgs sector in the CP-conserving MSSM (rMSSM) has been tack-
led up to the two-loop level by different methods such as the Effective Potential (EP)
method [3-6], the renormalization group (RG) improved one-loop EP approach [7] and
the Feynman-diagrammatic (FD) method using the on-shell renormalization scheme [8,9].
This method has provided the only complete calculation at the one-loop level includ-
ing momentum dependence [10] and furthermore the dominant logarithmic and non-
logarithmic corrections at the two-loop level [9,11]. The application of different methods
lead to thorough comparisons between the different approaches.

In the case of the MSSM with complex parameters (cMSSM) the higher order cor-
rections have been performed, after the first more general investigations [12], in the EP
approach and in the RG improved one-loop EP method [13-17]. In the context of the
FD approach, so far an exploratory study, including a calculation of the leading terms
has been performed [18]. A full one-loop calculation, including momentum dependence,
as well as an evaluation of the leading two-loop corrections have been missing so far.

This paper provides the next step into this direction: We present the full one-loop
calculation for the Higgs boson masses and mixing angles in the cMSSM. Concerning the
Higgs boson masses, the full momentum dependence has been taken into account. In this
paper we present briefly the calculation and discuss the effects on the Higgs boson masses
that originate from the new terms that extend the available calculations obtained using
the EP and RG approach. More details about the evaluation as well as a more detailed
numerical analysis can be found in Refs. [19,20]. All results are incorporated into a public
Fortran code, FeynHiggs2.0.

The rest of the paper is organized as follows. In Section 2 we review the Higgs
sector and the scalar quark sector of the cMSSM, providing the relations of physical
and unphysical parameters, the masses and the mixing angles. Section 3 contains the
numerical analysis. We conclude with Section 4.

2 Calculational framework

2.1 The tree-level structure of the cMSSM Higgs sector
The ¢cMSSM Higgs potential reads [21]:

V = m%Hﬂ'_(l + m%Hgﬂg - (m%QEGbH(ng + hC)
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where m?, m3, m2, are soft SUSY-breaking terms (m?3, can be complex), g, ¢’ are the SU(2)
and U(1) gauge couplings, and €5 = —1. The doublet fields H; and Hy are decomposed
in the following way:
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¢ is a phase between the two Higgs doublets. In the Higgs potential it appears only in the
combination & = £ 4 arg(m2,). From the unphysical parameters in Eq. (1) the transition
to the physical parameters (including the tadpoles) is performed by the substitution (see
Refs. [19,20] for details):

2 2 2 2
V1, V2, g1, g2, My, My, |m12|7 gl — €, Sw, MZ7 tanﬁa MHia Th7 THa TA . (3)

e is the electric charge, s%, = 1 — ¢, with cyy = My /My, where My, and My are the
masses of the W and the Z boson, respectively. Furthermore, tan 3 is the ratio of the two
vacuum expectation values, tan 5 = vy /vy (sg =sinf3,cg = cos ), Mpy= is the mass of
the charged Higgs boson, and T}, x = h, H, A denote the tadpoles of the fields h, H and
A, see below.

At the tree-level, the tadpoles have to be zero. In the case of T this can only be
fulfilled if ¢ = 0. Thus CP-violation is absent at the tree-level. The bilinear part of the
Higgs potential has to be diagonalized to obtain the mass eigenstates. In the CP-even
sector this is done with the help of the angle «, and results in the two neutral C’P-even
Higgs bosons h and H. In the CP-odd sector the diagonalization can be performed with
the angle 3, leading to the CP-odd A boson and the neutral Goldstone boson G. The
charged Higgs sector is also diagonalized with the angle (3, resulting in the charged Higgs
bosons H* and the Goldstone bosons G*. One arrives at the following masses at tree-
level:

H

3

17 . _
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ire _ _
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A : omi=Mhe — M, (= Mp:)
G : mi = M
H* : M.
Gi : méi = Mi%[/ (4)
Mg+ and tan (3 are chosen as input parameters. The entries for the Goldstone bosons G
and G* are to be understood in the Feynman gauge. Since there is no CP-violation in

the cMSSM Higgs sector at tree-level, there is no mixing between h and H and the fields
A and G.
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2.2 The fermion and gaugino sectors of the cMSSM

Possibly CP-violating parameters occur in all other SUSY sectors of the cMSSM. Most
important for Higgs boson phenomenology is the scalar quark sector. The mass matrix
of two squarks of the same flavor, ¢, and ¢g, is given by

M2 +m?2 m, X*
M- = L q q “q 5
d ( mg Xg Mé%—m?]) (5)

with

M} = M3+ Mjcos20 (I — Qusiy)
My = Mé/ + M7 cos 23 Q,5t (6)
X, = A,— p{cot 3, tan G},

where {cot 3, tan 3} applies for {up, down}-type squarks, respectively. A, and p can be
complex. In an isodoublet the SU(2) symmetry enforces that Mg has to be chosen equal
for both squark types. The Mg, on the other hand can be chosen independently for every
squark type. In the scalar quark sector of the cMSSM NN, + 1 phases are present, one for
each A, and one for . The squark mass eigenstates are obtained by diagonalizing the
mass matrix and are given by

mZ , =m+ % (M} + M F /(M7 — ME)* + 4m2|X,[? | (7)
The masses are independent of the phase of X,. However, the phase of A, affects the
mass eigenvalues since it changes the absolute value of X,.

The other possibly complex parameters are M; and M,, which are the soft SUSY-
breaking parameters in the gaugino sector, and mg, the gluino mass. These parameters
are less important for the Higgs sector phenomenology; m; enters the predictions only at
the two-loop level.

2.3 The neutral Higgs boson sector at the one-loop level

The inverse neutral Higgs boson propagator matrix in the cMSSM at the one-loop level
is given by

¢ — m% + ihh(qz) ihH(QQ) ihA(QQ)
. ! ] ’
(Aniggs) = —i Xhn(q?) ¢* —mi + Ly (q?) Yual’)
Y an(q®) San(q?) ¢ —m% + Xaa(q®)

(8)
33 denotes the renormalized Higgs boson self-energies (at the one-loop level). CP-violation
occurs, i.e. mixing between the CP-even Higgs bosons h, H, and the CP-odd Higgs boson
A occurs if the self-energies Sug = Yga and /or Sun = Ypa are non-zero. This can
happen if the complex parameters in the cMSSM possess an imaginary part. Also the
pure CP-even self-energies, Shn, Spa and Sy, and the pure CP-odd self-energy, Saa,
are numerically affected if some cMSSM parameters are complex. Details about the
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calculation of the renormalized Higgs boson self-energies and the on-shell renormalization
procedure can be found in Refs. [18-20].

The poles of the Higgs boson propagator matrix are the squares of the pole masses of
the three neutral Higgs bosons including higher-order corrections. The masses are denotes
by Mpyyy Mhyy Mpg with mMhp, S mp, S mps.

Besides the Higgs boson masses, also the effects of the higher-order corrected self-
energies on the Higgs boson couplings to SM gauge bosons and fermions can be evaluated.
In the limit of ¢> = 0, i.e. (¢?) — %(0), the transition from the tree-level states h, H, A
to the mass eigenstates at higher orders, hq, hs, hy can be described with the rotation
matrix U,

hy Ul Uiz U3 h h
hg = Ug1 U2 U923 H =U H . (9)
hs uzy Ugz U3z A A

U includes the dominant corrections (coming from Higgs boson propagators) into the
effective couplings [22]. The explicit formulas are given in Refs. [16,18].

The Higgs boson self-energies have been evaluated by taking into account all sectors of
the cMSSM, including possibly complex parameters and the full momentum dependence.
The evaluation has been done with the help of the programs FeynArts [23] (using the
MSSM model file [24]) and FormCalc [25]. The results, supplemented by the leading two-
loop contributions taken over from the rMSSM [4, 8,9], have been transformed into the
Fortran code FeynHiggs2.0 [26]. The code evaluates the Higgs boson masses, the mixing
matrix and the corresponding corrections to the couplings of the Higgs bosons to SM
gauge bosons and fermions. FeynHiggs2.0 is available at www.feynhiggs.de .

3 Numerical examples and discussion

In this section numerical examples are presented and discussed. They are meant to
illustrate on the one hand the possible effects of complex phases in the MSSM and on the
other hand the effects of the newly evaluated terms. For a more detailed phenomenological
analysis constraints on CP-violating parameters from experimental bounds, e.g. on electric
dipole moments (EDMs), have to be taken into account [27]. However, in our analysis
below we only take non-zero phases for A, = A, and Ms, which are not severely restricted
from EDM bounds.

The numerical analysis given below has been performed in the “CPX” scenario [28],
where the parameters are fixed to

Msusy = 500 GeV, |A,] = |Ay| = 1000 GeV, p = 2000 GeV, M, = 500 GeV,
Mpy+ =150 GeV, tan3 =5, (10)

if not indicated differently. The phases are always defined explicitly. However, our analysis
is confined to ¢, = 0, since this is the most restricted phase, see e.g. Ref. [29] and
references therein. The CPX scenario has been defined in order to maximize the effects
of complex phases. It should be kept in mind that while the relatively high value of || is
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not realized in minimal models like mSUGRA, mGMSB or mAMSB, it can lead to large
effects especially in the b/b sector.

In our numerical analysis we concentrate on the Higgs boson masses derived from the
one-loop corrections only. This is sufficient to show the effects of the newly evaluated
corrections. A more detailed numerical analysis, including also the effects on the rotation
matrix and correspondingly to the Higgs boson couplings to SM gauge bosons and fermions
can be found in Refs. [19,20].

In Fig. 1 we show the two lighter masses, my, and my,, for the parameters in Eq. (10)
as a function of ¢4,. The dotted line shows the result for the (s)fermion sector! in the
¢*> = 0 approximation, the dashed line shows the full cMSSM with ¢*> = 0, and the full
line also includes the momentum contributions. The effect of the subleading one-loop
contributions, i.e. the ones beyond the (s)fermion sector, can give rise to changes in my,
and my, of O(4 GeV). The further inclusion of the momentum dependence can result in
a shift of my, of O(2 GeV) for large values of ¢y ,.
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Figure 1: my, and my, are shown as a function of ¢4, for the parameters of Eq. (10). The
dotted line shows the result for the (s)fermion sector in the ¢ = 0 approximation, the
dashed line shows the full cMSSM with ¢? = 0, and the full line also includes the effects
of the non-vanishing momentum.

All neutral Higgs boson masses, my,, mp,, Myp,, are shown as a function of My=+ in
Fig. 2 for the parameters of Eq. (10). It becomes apparent that especially when two
mass eigenvalues are close to each other, the newly evaluated terms and the momentum
dependent contribution can change the results by several GeV. Especially the inclusion

1With the (s)fermion sector we denote here the t/i/b/b sector. The effects of the other fermions and
sfermions are numerically small and stay below 1 GeV [19,20].
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Figure 2: my,, my, and my, are shown as a function of My« for the parameters of Eq. (10)
and ¢4, = /2. The line styles are as in Fig. 1.
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Figure 3: Agy = my, —my, is shown as a function of My« for the parameters of Eq. (10).
The line styles are as in Fig. 1. The upper and lower curves correspond to ¢4, = 7/2 and

a4, = 0.
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of the momentum dependence results here in a larger mass gap of the two lightest masses
compared to the result where the momentum dependence has been neglected.

Of particular interest is the mass gap between the two heavier neutral Higgs boson
masses. For values of My+ 2 200 GeV, my, and my,, can be very close to each other,
which makes their experimental resolution at a collider experiment difficult. In Fig. 3 we
show Agy = my, — my, as a function of My+ in the rMSSM, i.e. for ¢4, = 0 (lower set
of curves) and for ¢4, = 7/2 (upper set). The different line styles are as in Fig. 1. In
the chosen scenario Ay is always larger in the case of ¢4, = /2 as compared to the
case where ¢4, = 0. The induced difference in Asy can be larger than 50 GeV. The
impact of the non-(s)fermionic terms can be of O(5 GeV). It should be kept in mind that
changing the phase of A; also effects the absolute value of X;. In fact, in Refs. [19,20]
it is demonstrated that every mass gap that can appear in the cMSSM can (for another
choice of parameters) also be accommodated in the rMSSM.

Finally, in Fig. 4 we show the effect of ¢)s, on the lightest Higgs boson mass in the
scenario of Eq. (10). The dashed (full) line shows the difference of the full MSSM with
q¢> = 0 (# 0) to the (s)fermion approximation with ¢> = 0. The effect of the non-

PO,

Amy, [GeV]
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Figure 4: The effects on my,, of the different sectors normalized to the (s)fermion sector
evaluation only (i.e. the (s)fermion sector contribution subtracted) is shown as a function
of ¢, for ¢, = ¢4, = 0 and the other parameters as in Eq. (10). The dashed (full) line
shows the result for the full cMSSM with ¢* = 0 (#£ 0).

(s)fermionic contribution are in this case of O(3 GeV), and the momentum dependence
induces a shift of O(1 GeV). The effect of ¢y, is S 1 GeV. Thus the phase of M, has
a much smaller impact than the phases of the trilinear couplings. In a more detailed
analysis of the cMSSM parameter space (see Refs. [19,20]) it has been found that large
effects of the phases of the gaugino mass parameters on my,, mp,, My, or on the mixing
of CP-even and CP-odd states can only occur if two mass eigenvalues are very close to



1A: Higgs Collider Physics 645

each other. Thus, the effect observed in Ref. [15] that the mixing of the two heavier Higgs
states depends strongly on the phase of Ms or M; happens only in a very small part of
the cMSSM parameter space.

4 Conclusions

We have presented a complete one-loop calculation of the Higgs boson masses in the
MSSM with complex parameters. The calculation has been performed in the Feynman-
diagrammatic approach, using the on-shell renormalization scheme. Besides the full spec-
trum of cMSSM particles also the momentum dependence has explicitly been included.

In the numerical analysis we have investigated the effects of the non-(s)fermionic sec-
tors as well as the effects of the momentum dependence on the three neutral Higgs boson
mass eigenvalues, my, , mp, and mp,. The analysis has been performed for a set of cMSSM
parameters that maximizes the effects of the CP-violating phases. In this case we find
that the corrections of the non-(s)fermionic sector can be of O(5 GeV), while the mo-
mentum dependence induces a shift of up to 2 GeV. These effects are more pronounced
if two of the mass eigenvalues are close to each other. The observed effects on my,, mp,
and my,, of the newly included corrections are thus of the order of several GeV and have
to be taken into account in phenomenological analyses of the cMSSM Higgs boson sector
in view of the prospective experimental precision at the next generation of colliders. The
phase of the gaugino mass parameters, ¢y, and ¢, are found to have only a relatively
small effect, except in a very small regions of the parameter space, where two of the mass
eigenvalues are very close to each other.

The results of the full one-loop calculation, supplemented with the dominant and
subdominant corrections taken over from the rMSSM, have been implemented into the
Fortran program FeynHiggs2.0. The code can be obtained at www.feynhiggs.de .
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