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Abstract

I discuss the Higgs boson spectra of the Next-to-Minimal Supersymmetric Standard
Model. The renormalisation group flow is used to motivate natural values of the
parameters of the model. I present the qualitative features of the Higgs boson masses
and demonstrate their dependence on how severely the Peccei–Quinn symmetry of
the model is broken.

1 The Model

1.1 The NMSSM as a solution to the hierarchy problem

Supersymmetry is widely regarded as being one of the most likely candidates for physics
beyond the Standard Model. It is naturally contained in many theories of physics at or
beyond the GUT scale, and by making supersymmetry local, a theory of gravity naturally
emerges. Furthermore, low energy supersymmetry solves the hierarchy problem, stabilis-
ing the Higgs boson mass at the electroweak scale as required for electroweak symmetry
breaking. For these reasons the minimal supersymmetric standard model (MSSM) at-
tracts much study. However, it is important that we consider models beyond the minimal
version of supersymmetry. In particular, theories of physics at the Planck scale often
involve higher gauge symmetry groups. These symmetries become broken at the TeV
scale, often leaving behind extra residual symmetries and/or particles. It is important
that the effects of such minor (and reasonable) additions to the low scale phenomenology
be thoroughly investigated.

One such model is the next-to-minimal supersymmetric standard model (NMSSM) [1],
which includes an extra Higgs singlet field in order to explain the µ problem of the
MSSM. The MSSM Superpotential contains the term −µH1εH2, where µ has dimensions
of mass. One would naturally expect µ to be either zero or the Planck mass, but to fit
phenomenological constraints it must be of the order of the electroweak scale. It is then
natural to ask: why is µ so small but non-zero? The NMSSM postulates that µ originates
from the vacuum expectation value of a new complex scalar Higgs field N . The NMSSM
superpotential contains the term −λNH1εH2, and, by allowing the new singlet field to
gain a non-zero expectation value comparable to that of the other Higgs bosons, the µ
term naturally emerges at the required scale: µ = λ〈N〉. Of course, this still does not
explain why the expectation values of the fields and consequently the electroweak scale
itself are so much smaller than the Planck scale in the first place.

Notice that the NMSSM superpotential exhibits an extra U(1) symmetry, known as
the Peccei–Quinn symmetry [2], which is explicitly broken in the MSSM by the µ-term
itself. This symmetry is spontaneously broken by the singlet Higgs field acquiring a
vacuum expectation value and subsequently would lead to a massless CP odd Higgs field.
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Although much of the allowed parameter space has been ruled out by searches for this
“Peccei–Quinn axion”, the parameter range 10−7 < λ < 10−10 is still allowed [3]. However,
due to the very small value of λ, this would require a very large value of 〈N〉 and would
therefore be a rather unsatisfactory solution of the µ problem.

Consequently one must explicitly break this symmetry, which is usually done by in-
troducing a breaking term of the form 1

3
κN3 into the superpotential1. This extra term

explicitly breaks the Peccei–Quinn symmetry, while violating no other wanted symmetry,
and results in the NMSSM superpotential:

W = −λNH1εH2 +
1

3
κN3 + . . . (1)

where the ellipsis denotes the usual MSSM superpotential minus the µ-term.
Of course, one should not ignore the domain wall problem which the NMSSM gener-

ates [4]. The superpotential described above still has a Z3 symmetry which would lead
to domain walls in the early universe between regions which became causily disconnected
during inflation. Attempts to break this Z3 symmetry by introducing explicit Z3 breaking
operators were found to lead to quadratically divergent tadpoles and subsequently a very
heavy singlet Higgs boson [5]. Recently, work has been done by a number of groups [6] to
alleviate this problem by introducing new symmetries (e.g. Z2) which loop suppress the
tadpole terms. These approaches lead to Z3 breaking (solving the domain wall problem)
while preserving the mass hierarchy.

1.2 Constraining the parameters of the NMSSM Higgs sector

The Higgs potential of the NMSSM resulting from the above superpotential is [1],

V = VF + VD + Vsoft + ∆V (2)

where the F-terms, D-terms and soft supersymmetry breaking terms are given by

VD =
1

8
g2(H†

1σH1 + H†
2σH2)2 +

1

8
g′(|H1|2 − |H2|2)2, (3)

VF = λ2|N |2(|H1|2 + |H2|2) + | − λH1εH2 + κN2|2 , (4)

Vsoft = m2
1|H1|2 + m2

2|H2|2 + m2
s|N |2 − [λAλNH1εH2 +

1

3
κAκN

3 + h.c.], (5)

respectively. ∆V represents higher order corrections from top and stop loops; its one-loop
vacuum-expectation value is given by:

〈∆V 〉 =
3

32π2

[
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)]
. (6)

The NMSSM Higgs sector is then defined by the parameters λ and κ, augmented
by their associated soft supersymmetry breaking parameters Aλ and Aκ, and the soft

1One could in principle also include terms of the form κ′N2 or κ′′N to break the U(1) symmetry, but
this would introduce further dimensionful couplings.
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masses m1, m2 and ms. By finding the minimum of the Higgs potential one obtains
three equations relating these parameters to the vacuum-expectation-values of the fields.
These equations can be used to eliminate the three soft masses in favour of the auxiliary
parameters tan β (the ratio of the expectation values of the two Higgs doublets), µ (or
equivalently 〈N〉) and the sum of the squares of the Higgs doublet vacuum expectation
values v2 = v2

1 + v2
2. Only six free parameters remain to be varied: λ, κ, tan β, µ, Aλ and

Aκ.
One can get some idea of the value of these parameters by investigating their renor-

malisation group running from higher scales [7]. This follows due to the presence of an
infra-red quasi-fixed point in the model [8]; the renormalisation flow ‘pulls’ the param-
eters towards this quasi-fixed point as they run down from the GUT scale. While the
presence of this fixed point may seem advantageous at this stage since it tells us what the
likely values of the low scale parameters are, it will eventually prove to be awkward once
the parameters are experimentally determined since it will prevent us from accurately
extrapolating to their values at the high scale and thereby inhibit our investigation of the
high scale theory [9].

This renormalisation group running is most usefully demonstrated by looking at two
quantities:

√
λ2 + κ2 and κ/λ. The dependence of

√
λ2 + κ2 is shown in figure 1 (left),

where one notes that even large values of this quantity tend to lead to small values at
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Figure 1: The dependence of
√

λ2 + κ2 (left) and κ/λ (right) on renormalisation scale.
The different curves represent different values of λ and κ at the GUT scale (MX). For
the left-hand plot λ(MX) = κ(MX) = 1, 1.5, 2, 2.5 and 3. For the right hand plot
κ(MX)/λ(MX) = 0.5, 1, 1.5, 2 and 2.5, with λ(MX) = 1.

lower scales. Indeed, the requirement of perturbativity up to the GUT scale leads to the
restriction λ2 + κ2 � 0.5 at the electroweak scale. The running of the second quantity,
seen in figure 1 (right), is not quite so pronounced, but again the quantity tends towards
low values at the low scale. Additionally, the value of λ should not be too small if one
wants to maintain a ‘natural’ theory. Since λ is related to the vacuum expectation value
of the new singlet field and µ by λ = µ/〈N〉, a small value of λ implies a large value of
〈N〉, no longer comparable to the vacuum expectation values of the other Higgs fields.

Putting all this together demonstrates that the Peccei–Quinn U(1) symmetry is most
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likely to be only ‘slightly’ broken, with the value of κ/λ of order one or less. Of course,
this is not to say that the theory must be of this form; only that the majority of plausible
parameter choices at the high scale lead to low values of κ/λ at the low scale, making this
the most likely scenario. I will therefore pay most attention to this case, but not ignore
the other possibilities.

The renormalisation group running from high scales towards the infra-red fixed point
also favours low values of tan β. Although very low values of tan β (< 2.4) have already
been ruled out in the MSSM by the LEP experiments [10], these experimental restrictions
are not applicable to the NMSSM. Here I will adopt a value of tan β = 5, suitable for
both the NMSSM and the MSSM.

2 The Higgs Boson Spectra

When examining the Higgs boson mass spectra, it is useful to introduce a new parameter
MA to replace to soft supersymmetry breaking parameter Aλ. I define MA to be the
diagonal entry in the pseudoscalar mass matrix which does not vanish as the MSSM limit
is approached (defined by letting κ and λ tend to zero while keeping κ/λ fixed). In this
limit MA becomes the mass of the pseudoscalar Higgs boson (hence my choice of name).
At tree-level it is given by:

M2
A =

2µ

sin 2β
(Aλ + µκ/λ). (7)

The extra complex scalar field results in two additional Higgs bosons, substantially
complicating the Higgs boson mass matrices. The scalar mass matrix becomes a 3 ×
3 matrix while the pseudoscalar becomes a 2 × 2 matrix. Consequently the analytic
expressions for the physical masses become somewhat unwieldy and unenlightening. To
aid the eye, it is useful to consider the approximate form of these equations under the
assumption that MA is large compared to the other scales, and 1/ tan β and κ/λ are
<< 1. Making an expansion in the resulting small quantities leads to a rather crude but
instructive approximation2. The tree-level CP even Higgs boson masses then take the
approximate form:

M2
H3

≈ M2
A

{
1 +

1

2
λ2v2

(
sin 4β

4µ

)2
}

, (8)

M2
H2

≈ M2
Z , (9)

M2
H1

≈ κµ

λ

(
4
κµ

λ
− Aκ

)
, (10)

while the CP odd approximate tree-level masses are:

M2
A2

≈ M2
A

{
1 +

1

2
λ2v2

(
sin 2β

2µ

)2
}

, (11)

M2
A1

≈ 3
κµ

λ

{
Aκ +

3

2
λ2v2

(
sin 2β

2µ

)}
. (12)

2It must be stressed that this approximation is used only for illustrative purposes and has not been
used to calculate any of the Higgs spectra in this report.
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No approximation is required for the tree-level charged Higgs boson mass, which is [1]:

M2
H± = M2

A + M2
W − 1

2
λ2v2. (13)

Notice that the masses of the lightest Higgs bosons are governed by the value of κ/λ,
i.e. how severely the Peccei–Quinn symmetry is broken. For ‘slightly’ broken Peccei–
Quinn symmetry scenarios the lightest scalar and pseudoscalar will be rather light. The
next heaviest scalar will be of a mass around the electroweak scale and the remaining
Higgs states will lie close to the scale MA.

2.1 The NMSSM with a Peccei–Quinn symmetry

It is instructive to first consider the case where κ = 0, leaving the Peccei–Quinn symmetry
of the model unbroken in the superpotential. It is then only spontaneously broken by
the vacuum, giving rise to a massless Goldstone boson, which is manifest as the extra
pseudoscalar Higgs field. Since there is now no need for the soft supersymmetry-breaking
term proportional to Aκ there are only 4 parameters in the model at tree-level: λ, µ, tan β
and MA.

The one-loop Higgs boson masses are plotted as a function of MA with λ = 0.5 in
figure 2. One immediately notices the restriction on MA caused by the lightest scalar
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Figure 2: The Higgs boson masses, plotted as a function of MA for λ = 0.5, κ = 0,
µ = 100 GeV and tan β = 5.

Higgs boson. It is forced to be in the range of approximately µ tan β (or more accurately
2µ/ sin 2β = 520 GeV in this case) to ensure the stability of the physical vacuum. Large
values of µ and/or tan β would lead to a very large mass splitting between the heavy and
light Higgs bosons. Even with quite low values of µ and tan β the restriction on MA leads
to a very distinct mass hierarchy. The charged Higgs boson, together with the heaviest
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CP odd and CP even Higgs bosons remain at the scale of MA. The lightest CP odd Higgs
boson is massless (the Goldstone boson) and the lightest scalar is also very light. The
remaining scalar has a mass of the order of the electroweak scale. This is exactly as seen
in the crude approximation presented earlier. (The small mass of the lightest scalar is
provided by terms which have been neglected in equation 10.)

The lightest states in this model are predominantly composed of the new degrees of
freedom resulting from the new complex scalar field N . Since they have a small (or zero)
mass and mix only very weakly with the other degrees of freedom, the intermediate and
heavy Higgs bosons in this model have masses very reminiscent of the MSSM.

The presence of a massless pseudoscalar and light scalar immediately rules out this
parameter choice. The direct production of the lightest scalar, H1, together with a Z
boson would have been possible at LEP for much of the allowed MA range. However,
the coupling gZZH1 passes through zero in this range, so such production alone does not
rule out the model. The Z boson decay to the lightest scalar and pseudoscalar Higgs
bosons, Z → H1A1, is more damaging, since the coupling is always large enough to allow
detection which the choice of λ made here. This may only be remedied by forcing λ to
become very small, so that the extra scalar and pseudoscalar fields decouple from the
other Higgs bosons. However, this is somewhat academic since (as already discussed)
cosmological and astrophysical observations have already ruled out all values of λ except
for the window 10−7 < λ < 10−10 [3]. Although this window forces the required decoupling
it is clearly unsuitable for explaining the µ-problem.

2.2 The NMSSM with a slightly broken Peccei–Quinn symme-
try

Turning on a non-zero value of κ breaks the Peccei–Quinn symmetry and provides a mass
for the lightest pseudoscalar Higgs boson. I consider the symmetry to be only slightly
broken as long as κ � λ, as favoured by the renormalisation group flow. There are
two extra parameters in the model as compared to the case with an unbroken Peccei–
Quinn symmetry: κ and its associated soft supersymmetry-breaking parameter Aκ. For
illustrative purposes I choose Aκ = 100 GeV, but the reader should be aware that one
can easily change the masses of the two singlet dominated fields by altering this value, as
indicted by the crude approximation of equations 10 and 12.

The one-loop masses of the Higgs bosons for λ = 0.5 and κ = 0.35 are shown as a
function of MA in figure 3. As before, the heavy Higgs bosons all have masses around the
value of MA and one of the scalar Higgs bosons remains at approximately the electroweak
scale. The extra singlet dominated pseudoscalar is no longer massless. Its mass has been
raised from zero by having the Peccei–Quinn symmetry explicitly broken by the term
1
3
κN3 in the superpotential. Once again, the value of MA is bounded by the requirement

that the physical vacuum be stable (i.e. M2
H1

> 0), although the restriction is now much
looser.

Also shown are the restrictions on MA imposed by the LEP experiments [10] for this
parameter choice. These limits are dependent on the masses of the light Higgs bosons
and their couplings to the Z. The light scalar escapes detection via Higgs-strahlung only
when it has a sufficiently reduced coupling to the Z boson. Since this coupling passes
through zero in the allowed range, one is unable to rule out all values of MA. Furthermore,
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Figure 3: The one-loop Higgs boson masses as a function of MA for λ = 0.5, κ = 0.35,
µ = 100 GeV, tan β = 5 and Aκ = 100 GeV.

in contrast to the κ = 0 scenario, the lightest pseudoscalar is now rather heavy and the
direct production of e+e− → H1A1 would not have been accessible at LEP.

Varying the parameters µ, tan β and Aκ does little to change the qualitative picture
presented here, although the values of the masses are changed. In particular, increasing
µ or tan β causes the allowed region to move up to higher values of MA, resulting in the
increase of the heavy Higgs boson masses while leaving the lighter masses little affected.
Changing the value of Aκ only varies the lightest pseudoscalar and scalar masses, leaving
the rest of the spectrum unchanged.

2.3 The NMSSM with a severely broken Peccei–Quinn symme-
try

When κ becomes much greater than λ, the Peccei–Quinn symmetry is severely broken.
The extra pseudoscalar and scalar Higgs bosons gain large masses from the Peccei–Quinn
breaking term 1

3
κN3 in the superpotential. This is so pronounced that the scalar Higgs

boson which is comprised mainly of the new fields may no longer be the lightest scalar
Higgs boson. That rôle is then taken over by a Higgs boson which is predominantly
composed of the usual lightest Higgs boson of the MSSM. This switching of rôles leads
to extra intermediate mass scalar and pseudoscalar states for all values of MA. The
one-loop masses of these Higgs bosons are shown as a function of MA for the parameter
choice λ = 0.2 and κ = 0.5 in figure 4. LEP limits for this scenario are not shown since
they exclude only very low values of MA, which are predominantly ruled out by vacuum
stability (i.e. the requirement that M2

A1
> 0).

As for the scenario with a slightly broken Peccei–Quinn symmetry, varying the param-
eters µ, tan β and Aκ does not drastically change the structure of the spectrum. Again
Aκ has the most influence, allowing one to increase the mass of the singlet dominated
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Figure 4: The one-loop Higgs boson masses as as a function of MA for the parameter
choice λ = 0.2, κ = 0.5, µ = 100 GeV, tan β = 5 and Aκ = 100 GeV.

scalar or pseudoscalar while decreasing the mass of the other.
This scenario is less attractive due to the renormalisation group flow, since large values

of κ/λ at the GUT scale tend to be diluted when running down to the electroweak scale,
as shown in figure 1 (right).

3 Summary and Conclusions

In this presentation I have investigated the Higgs sector of the Next-to-Minimal Supersym-
metric Standard Model. This model attempts to explain the µ-problem of the MSSM by
introducing a new singlet Higgs field, N , with a non-zero vacuum expectation value. The
NMSSM also provides an interesting example of the effects of introducing new symmetries
and particles into minimal supersymmetric models.

I have shown that the qualitative features of the Higgs boson masses are dependent
on how severely the Peccei–Quinn symmetry of the model is broken. The renormalisation
group running of the parameters from the high scale naturally leads to scenarios where
the Peccei–Quinn symmetry is only slightly broken.

If the Peccei–Quinn symmetry is left explicitly unbroken in the Lagrangian (although
broken by the structure of the physical vacuum), a massless Goldstone boson is present,
which is the usual Peccei–Quinn axion. This axion rules out most of the allowed parameter
space, only allowing scenarios which do not provide a valid solution of the µ-problem.

If the Peccei–Quinn symmetry is only slightly broken, the fields which are predom-
inantly composed of the new singlet degrees of freedom remain light. The LEP limits
on the lightest Higgs boson mass allow some of the parameter space to be ruled out.
However, since the couplings to the Z can be very much reduced, much of the parameter
space remains. It is therefore extremely important that future colliders search for light



702 Parallel Sessions

scalar and pseudoscalar Higgs bosons with reduced couplings.
In contrast, a severely broken Peccei–Quinn symmetry can lead to extra intermediate

mass Higgs bosons, which are only weakly coupled to the Z.
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