Quantum Effects to the Higgs boson self-couplings in the SM and in the MSSM.

Siannah Peñaranda

Institut für Theoretische Physik (ITP)
Universität Karlsruhe

From works in collaboration with:

W. Hollik

Eur. Phys. J. C23, 163-172, 2002, hep-ph/0108245

A. Dobado, M.J. Herrero and W. Hollik In preparation, KA-TP-25-2001

Plan of the talk

- Introduction
- Tree-level Higgs boson self-couplings
- One-loop contributions Analytical studies
 - Higgs sector itself
 - Leading contributions from $t-\tilde{t}$ sector
- Numerical analysis for heavy top-squarks sector
- Conclusions

Higgs self-couplings

To establish the Higgs mechanism experimentally in an unambiguous way, the Higgs self-interaction potential must be reconstructed.

This task requires the measurement of the trilinear and quartic self-couplings, as predicted in the Standard Model or in supersymmetric theories.

TESLA physics programme at $\sqrt{s} = 500$ GeV

TESLA Technical Design Report, DESY 2001-011

Double Higgs-strahlung: $e^+e^- \rightarrow ZHH$

- For a SM-like Higgs boson with $m_h=120$ GeV at $1000fb^{-1}$, a precision of $\delta\lambda_{hhh}/\lambda_{hhh}=23\%$ is possible.
 - D.J.Miller et~al., hep-ph/0001194; C.Castanier et~al., hep-ex/0101028
- Regions of accessibility in MSSM parameters for MSSM h^0 Higgs self-couplings have been determined:

R.Lafaye *et al.*, hep-ph/0002238; A.Djouadi, hep-ph/0001169

Radiative corrections to neutral Higgs self-couplings

- Use radiative corrections to obtain information for establishing the Higgs potential and thus the Higgs mechanism as the basic mechanism for generating the masses of the fundamental particles
- Three-point one-loop radiative corrections for the neutral Higgs system in the MSSM have been calculated within the effective potential approximation and in some limiting situations

```
V. Barger et al., Phys.Rev. D45 (1992)
P.Osland and P.N.Pandita, Phys.Rev. D59 (1999), hep-ph/9806351
```

- Phenomenological studies have addressed the issue of the measurements of some of the Higgs self-couplings in the MSSM
 M. Mühlleitner, hep-ph/0008127 and references therein
- Our intention is to investigate how far the MSSM Higgs potential reproduces the SM potential when the non-standard particles are heavy
- We want to explore decoupling behaviour, both numerically and analytically, of the radiative corrections to \hbar^0 self-couplings at the one-loop level
- We have started by
 - Leading contributions from $t- ilde{t}$ sector $ig(m_t>m_{h^0}\ ext{in the MSSM}ig)$
 - Contributions from the Higgs sector itself.

Tree-level Higgs boson self-couplings

Trilinear and quartic SM and MSSM Higgs boson self-couplings

ϕ		$\lambda_{\phi\phi\phi}$	$\lambda_{\phi\phi\phi\phi}$
SM	Н	$rac{3gM_H^2}{2M_W}$	$\frac{3g^2M_H^2}{4M_W^2}$
MSSM	h^o	$\frac{3gM_Z}{2c_W}\cos 2\alpha\sin(\beta+\alpha)$	$\frac{3g^2}{4c_W^2}\cos^2 2\alpha$

Decoupling limit in the Higgs sector, Haber & Nill 1990

$$M_A\gg M_Z$$

$$M_{H^o}\simeq M_{H^\pm}\simeq M_A\gg M_Z$$

$$M_{h^o}\simeq M_Z|\cos 2\beta|$$

$$\alpha\to\beta-\frac{\pi}{2}\ \Rightarrow\ \cos 2\alpha\to-\cos 2\beta\ \sin(\beta+\alpha)\to-\cos 2\beta$$

$$\downarrow\qquad \phi\equiv h^0$$

$$\lambda^0_{\phi\phi\phi}\simeq \frac{3g}{2\,M_W}\,M_{h^0}^{2\,\mathrm{tree}}\,,\quad \lambda^0_{\phi\phi\phi\phi}\simeq \frac{3g^2}{4\,M_W^2}M_{h^0}^{2\,\mathrm{tree}}$$

Tree-level couplings lead to equal results in the $\overline{\rm MSSM}$ and in the $\overline{\rm SM}$ in the $decoupling\ limit$

⇒ Decoupling at tree-level

One-loop contributions to the Higgs self-couplings

ANALYTICAL STUDIES

- ullet Our intention is to investigate the differences between the corrections to the h^0 self-couplings with respect to the $H_{
 m SM}$ self-couplings
- We want to study the radiative corrections from heavy top-squarks and Higgs sector itself to the Higgs self-couplings at one-loop level
- Analytical results for the n-point renormalized vertex functions in the MSSM and in the SM Is there decoupling of heavy particles beyond tree-level?
- By using the standard on-shell renormalization procedure

```
A. Dabelstein, Z. Phys. C67 (1995) 495; Nucl. Phys. B456 (1995) 25;
M. Böhm, H. Spiesberger, W. Hollik, Fortsch. Phys. 34 (1986) 687;
W. Hollik, Fortsch. Phys. 38 (1990) 165.
```

- ullet Generic R_{ξ} gauge
- We consider the decoupling limit

$$M_{H^0} \sim M_{H^\pm} \sim M_{A^0} \gg M_Z$$

while both the h^0 mass and the momenta of the external particles remain at the same low energy scale below ${\cal M}_{A^0}$

and in $t- ilde{t}$ sector:

$$\begin{split} m_{\tilde{t}_1}^2 \,, m_{\tilde{t}_2}^2 \gg M_Z^2 \,, M_{h^0}^2 \\ |m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2| \ll |m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2| \end{split}$$

Higgs sector contributions

SIMPLIFICATIONS

- 1. We have checked that one-loop contributions from diagrams that have at least one gauge boson particles are the same in both models
 - pure gauge boson diagrams are exactly the same
 - (γ,Z,W^\pm) + (H^0,H^\pm,A^0) one-loop diagrams are proportional to $\cos(\beta-\alpha)\to 0$ in the $decoupling\ limit$

2. We consider

$$\begin{split} \phi & \equiv H^0 \ , H^{\pm} \ , A^0 & \Leftrightarrow \text{Heavy Contributions} \\ \phi & \equiv H^0 \ , H^{\pm} \ , A^0 \ \text{and} \ G^0 \ , G^{\pm} \ , h^0 \Leftrightarrow \text{Mixed Contributions} \\ \phi & \equiv G^0 \ , G^{\pm} \ , h^0 \ (\ \text{or} \ \ H^{\text{SM}} \) & \Leftrightarrow \text{Light Contributions} \end{split}$$

(using path integral formulation, diagrammatic computation and FeynArts, FormCalc programs)

 $T. Hahn, \ hep-ph/0012260 \ , \ T. Hahn, \ M. P\'erez-Victoria, \ Comput. Phys. Com. 118 \ (1999) \ 153, \ hep-ph/9807565 \ http://www.feynarts.de$

One-loop contributions:

$$\begin{split} \Delta\Gamma_{h^0}^{(n)} &= M_Z^2 \left[\mathcal{O}\left(\frac{1}{\epsilon}\right) + \mathcal{O}\left(\log\frac{M_{EW}^2}{\mu_0^2}\right) + \mathcal{O}\left(\log\frac{M_{A^0}^2}{\mu_0^2}\right) + \text{ finite terms } \right] \\ &+ M_{A^0}^2 \left[\mathcal{O}\left(\frac{1}{\epsilon}\right) + \mathcal{O}\left(\log\frac{M_{A^0}^2}{\mu_0^2}\right) + \text{ finite terms } \right] \\ M_{EW}^2 &\equiv M_Z^2 \,, M_W^2 \,, M_{h^0}^2 \end{split}$$

- All potential non-decoupling effects of heavy Higgs MSSM particles manifest as divergent contributions in D=4 and some finite contributions, one of which is logarithmically dependent on M_{A^0} and the other one is quadratically dependent on M_{A^0} .
- Renormalized vertex:

$$\Delta\Gamma_{R\ h^0}^{(2)} = \Delta M_{h^0}^2,$$

$$\Delta\Gamma_{R\ h^0}^{(3)} = \frac{3g}{2M_Z c_W} \Delta M_{h^0}^2 + \frac{g^3}{64\pi^2 c_W^3} M_Z \Psi_{\rm MSSM}^{\rm rem},$$

$$\Delta\Gamma_{R\ h^0}^{(4)} = \frac{3g^2}{4M_Z^2 c_W^2} \Delta M_{h^0}^2 + \frac{g^4}{64\pi^2 c_W^4} \Psi_{\rm MSSM}^{\rm rem}.$$

where:

$$\begin{split} & \Delta M_{h^0}^2 = M_Z^2 \left[\mathcal{O}\left(\frac{1}{\epsilon}\right) + \mathcal{O}\left(\log\frac{M_{EW}^2}{\mu_0^2}\right) + \mathcal{O}\left(\log\frac{M_{A^0}^2}{\mu_0^2}\right) + \text{ finite terms } \right] \\ & \Psi_{\rm MSSM}^{\rm rem} \sim \mathcal{O}\left(\log\frac{M_{EW}^2}{\mu_0^2}\right) + \text{ finite terms} \end{split}$$

finite function dependent on β , and ξ -gauge dependent come only from light contributions

- The quadratic heavy mass terms, $M_{A^0}^2$, disappear in the onshell renormalization procedure
- The UV-divergence and the logarithmic dependence on $M_{A^0}^2$ can be absorbed in the redefinition of the Higgs boson mass $M_{h^0}^2$
- All potential non-decoupling effects of heavy Higgs bosons disappear, but $\Psi_{\rm MSSM}^{\rm rem}$ remains

SM HIGGS SELF-INTERACTIONS

 \bullet The renormalized Higgs propagator has a pole at $M^2_{H_{SM}}$

$$\Delta\Gamma_{R\,H_{SM}}^{(2)}(M_{H_{SM}}^2) = 0$$

ullet Renormalized H_{SM} self-couplings

$$\Delta\Gamma_{R\ H_{SM}}^{(3)} = \frac{g^3}{64\pi^2 c_W^3} M_Z \Psi_{SM}^{\text{rem}}, \quad \Delta\Gamma_{R\ H_{SM}}^{(4)} = \frac{g^4}{64\pi^2 c_W^4} \Psi_{SM}^{\text{rem}}.$$

where:

 $\Psi^{
m rem}_{SM} \; o \;$ finite function also ξ -gauge dependent

- Comments:
 - All divergent terms dissappear in the on-shell renormalization procedure
 - Some finite terms, included in $\Psi_{SM}^{\rm rem}$, remain They are, in principle, different to $\Psi_{\rm MSSM}^{\rm rem}$
 - HOWEVER, by identifying $M_{H_{SM}}^2\leftrightarrow M_{h^0}^{\rm tree^2}\simeq M_Z^2C_{2\beta}^2$ in the $decoupling\ limit$, we have obtained that

$$\Psi_{SM}^{\mathrm{rem}} \longrightarrow \Psi_{\mathrm{MSSM}}^{\mathrm{rem}}$$

 \Rightarrow The EW-finite terms are common to both h^0 and H_{SM}

(in the SM after renormalization of the trilinear and quartic couplings) if and only if $M_{A^0} \gg M_Z$.

$\mathcal{O}(m_t^4)$ one-loop contributions

• We consider the large masses limit:

$$m_{ ilde{t}_1}^2 \,, m_{ ilde{t}_2}^2 \gg M_Z^2 \,, M_{h^0}^2 \,,$$
 $|m_{ ilde{t}_1}^2 - m_{ ilde{t}_2}^2| \ll |m_{ ilde{t}_1}^2 + m_{ ilde{t}_2}^2| \,.$

 $\bullet \ {\it One-loop} \ t - \tilde{t} \ {\it diagrams}$

Green Functions Counterterms: $\delta\Gamma_{h^0}^{(1)}$, $\delta\Gamma_{h^0}^{(2)}$, $\delta\Gamma_{h^0}^{(3)}$, $\delta\Gamma_{h^0}^{(4)}$ $\Rightarrow \delta Z_{H_{1,2}}$, δv , δg^2 , $\delta g'^2$, δm_1^2 , δm_2^2 , δm_{12}^2

• MSSM Renormalized vertex functions

$$\Delta \hat{\Gamma}_{h^0}^{t,\tilde{t}(2)} = \Delta M_{h^0}^2,$$

$$\Delta \hat{\Gamma}_{h^0}^{t,\tilde{t}(3)} = \frac{3g}{2M_Z c_W} \Delta M_{h^0}^2 - \frac{3}{8\pi^2} \frac{g^3}{M_W^3} m_t^4,$$

$$\Delta \hat{\Gamma}_{h^0}^{t,\tilde{t}(4)} = \frac{3g^2}{4M_Z^2 c_W^2} \Delta M_{h^0}^2 - \frac{3}{4\pi^2} \frac{g^4}{M_W^4} m_t^4.$$

where:
$$\Delta M_{h^0}^2 = -\frac{3}{8\pi^2} \frac{g^2}{M_W^2} m_t^4 \log \frac{m_t^2}{m_{ ilde{t}_1} m_{ ilde{t}_2}}$$

- The UV-divergence cancel out in the renormalization procedure, such that the mass correction $\Delta M_{h^0}^2$ is finite
- The logarithmic terms in the heavy-squark masses disappear when the vertices are expressed in terms of the Higgs-boson mass $M_{h^0} \Rightarrow$ they decouple
 - but lineal heavy mass terms $\mathcal{O}(m_t^4)$ remain
- Without the non-logarithmic top-mass term, the trilinear and quartic h^0 self couplings at the one-loop level have the same form as the tree level couplings, with the tree-level Higgs mass replaced by the corresponding one-loop mass $M_{h^0}^2 = M_{h^0}^{2\,\mathrm{tree}} + \Delta M_{h^0}^2$.

• SM Renormalized trilinear and quartic self-couplings

$$\Delta \hat{\Gamma}_H^{(3)} = -\frac{3g^3}{8\pi^2 M_W^3} m_t^4, \qquad \Delta \hat{\Gamma}_H^{(4)} = -\frac{3g^4}{4\pi^2 M_W^4} m_t^4.$$

The non-logarithmic top-mass terms are common to both h^0 and H_{SM}

(in the SM after renormalization of the trilinear and quartic couplings).

SUMMARY

- Tree-level couplings are equal in the MSSM and in the SM in the $decoupling\ limit$
- Finite terms are the same in both models in the decou $pling \; limit \;$ by identifying $M_{H_{SM}}^2 \leftrightarrow M_{h^0}^{
 m tree^2} \simeq M_Z^2 C_{2eta}^2$
- ullet Difference between Renormalized MSSM and SM Higgs self-interactions

$$\Gamma_{R h^0}^{(2)} \stackrel{\text{MSSM}}{-} \Gamma_{R H_{\text{SM}}}^{(2)} \stackrel{\text{SM}}{=} \Delta M_{h^0}^2,$$

$$\Gamma_{R h^0}^{(3)} \stackrel{\text{MSSM}}{-} \Gamma_{R H_{\text{SM}}}^{(3)} \stackrel{\text{SM}}{=} \frac{3}{v} \Delta M_{h^0}^2,$$

$$\Gamma_{R h^0}^{(4)} \stackrel{\text{MSSM}}{-} \Gamma_{R H_{\text{SM}}}^{(4)} \stackrel{\text{SM}}{=} \frac{3}{v^2} \Delta M_{h^0}^2.$$

ullet The one-loop MSSM contributions to the h^0 vertex functions in the asymptotic limit either represent a shift in the h^0 mass and in the h^0 triple and quartic self-couplings, which can be absorbed in M_{h^0} ,

or reproduce the SM one-loop corrections.

ture of the SM Higgs-boson self-couplings.

ullet DECOUPLING IF AND ONLY IF $M_{A^0}\gg M_Z$

$\mathcal{O}(m_t^4)$ contributions to $\Delta \lambda_{hhh}/\lambda_{hhh}^0$

$$M_{\tilde{Q}} \sim M_{\tilde{U}} \sim 15 \ {\rm TeV} \ , \ \mu \sim |A_t| \sim 1.5 \ {\rm TeV} \ \Rightarrow \ |m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2| \ll |m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2|$$

ightarrow The radiative corrections dissappear when λ_{hhh}^0 is expressed in terms of M_{h^0}

Trilinear h^0 self-couplings

ullet Exact analytical results for $t- ilde{t}$ contributions to the trilinear h^0 self-couplings.

$$\Delta \lambda_{hhh} = \frac{3g^3}{32\pi^2} \frac{1}{M_W^3} m_t^4 \frac{\cos^3 \alpha}{\sin^3 \beta} \left\{ 3 \log \frac{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2}{m_t^4} + \ldots \right\}$$

We agree with the results given in

- V. Barger, M. S. Berger, A. L. Stange, R. J. Phillips, Phys. Rev. D45 (1992) 4128;
- P. Osland, P. N. Pandita, Phys. Rev. **D59** (1999) 055013; hep-ph/9911295; hep-ph/9902270
- Numerical analysis:
 - The SUSY parameters have been taken to be

$$M_{\tilde{Q}} \sim 1 \text{ TeV} \,, \ M_{\tilde{U}} \sim \mu \sim |A_t| \sim 500 \text{ GeV}$$

 $m_{\tilde{t}_1}$ and $m_{\tilde{t}_2}$, are heavy as compared to the to the electroweak scale, but their difference is of $\mathcal{O}(M_{\tilde{U}})$

$$\begin{split} m_{\tilde{t}_1}^2 \,, m_{\tilde{t}_2}^2 \gg M_Z^2 \,, M_{h^0}^2 \,, \\ |m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2| \simeq |m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2| \,. \end{split}$$

- The radiative correction to the lpha angle is included.

- Large correction which decrease with aneta
- The relation $\Delta\lambda_{hhh}/\lambda_{hhh}^0 \approx \Delta M_{h^0}^2/M_{h^0}^{2\,\mathrm{tree}}$ is fulfilled up to a small difference which remains also for large M_A

SUMMARY

- ullet For heavy stop system with large mass splitting, $\mathcal{O}(M_{SUSY})$, the $\mathcal{O}(m_t^4)$ corrections to the trilinear h^0 self-couplings are large, but their main part can again be absorbed in the mass M_{h^0} .
- ullet The genuine loop corrections to the triple couplings, after re-expressing them in terms of M_{h^0} , is of the order of a few per cent
 - \rightarrow They are largest for low tan β and M_{A^0} , typically 5%.
 - \rightarrow For large M_{A^0} , they decrease to the level of 1%.
- Not possible to measure at TESLA
- Similar results have been obtained for the quartic h^0 self-coupling.

CONCLUSIONS

- ullet We showed analytically that Higgs sector and $\mathcal{O}(m_t^4)$ one-loop contributions to the h^0 self-couplings :
 - Decouple when the self-couplings are expressed in terms of the Higgs-boson mass, in the limit of large M_{A^0} and heavy top squarks, with masses close to each other.
 - \Rightarrow The triple and quartic h^0 couplings acquire the structure of the SM Higgs-boson self-couplings.

Decoupling if and only if $M_{A^0}\gg M_Z$.

ullet For large mass splitting in the stop sector, the corrections to the triple couplings, after re-expressing them in terms of M_{h^0} , is of the order of a few per cent

Examples: For low $\tan \beta$ and M_{A^0} , typically 5%.

For large M_{A^0} , they decrease to the level of 1%.

- Similar results have been obtained also for the quartic h^0 self-coupling.

The h^0 self-interactions are very close to those of the SM Higgs boson for the heavy stop sector and would need high-precision experiments for their experimental verification. Not possible at TESLA

• IN PROGRESS:

- Explore both numerically and analytically complete radiative corrections to h^0 self-couplings and Phenomenological implications