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Abstract

We compute the complete next-to-leading order SUSY-QCD corrections for the asso-
ciated production of a charged Higgs boson with a top quark via bottom-gluon fusion.
The set of higher order corrections can be split into corrections in a general two Higgs
doublet model and additional massive supersymmetric loop contributions. These super-
symmetric contributions consist of the universal bottom Yukawa coupling corrections and
non-factorizable diagrams. We find that over most of the relevant supersymmetric param-
eter space the Yukawa coupling corrections are sizeable, while the supersymmetric loop
contributions remain negligible.

Higgs Physics at the LHC

Among the physics goals for the LHC the exploration of the nature of electroweak symmetry
breaking is the most prominent and the one closest to current observations. The LEP precision
measurements suggest the existence of a light Higgs boson which coincides with the prediction
of the MSSM. It has been shown that the discovery of at least one Higgs boson in the MSSM
will probably not pose any problem once the LHC collects a minimal integrated luminosity [1].
There is, however, only one way to tell the supersymmetric Higgs sector from its Standard
Model counterpart: to discover the additional heavy Higgs bosons. While the chances of finding
a heavy Higgs boson with a small value of tanβ at the LHC are rather slim, the discovery of
all heavy Higgs scalars in the large tanβ regime is likely. The production of a charged Higgs
boson in association with a top quark gg → b̄tH− and a subsequent decay into a tau lepton and
a neutrino seems to be a promising search channel [2, 3, 4] and experimentally easier than for
example the charged Higgs boson pair production [5]. Recently both LHC experiments have
published detailed studies of this production channel with very promising results [6].

Bottom Parton Scattering

As a starting point we emphasize that the exclusive production channel gg → b̄tH− is
perfectly consistent in the sense that it includes the squared matrix element to order α2

sy
2
b,t,

but beyond naive perturbation theory the integration over the final state bottom quark gives
rise to possibly large logarithms [7]. The massive bottom propagator leads to an asymptotic
transverse mass dependence 1/mT,b, so the infrared divergence is regularized by the bottom
mass. For small transverse bottom momenta the differential partonic cross section approaches
the asymptotic form dσ/dpT,b ∝ pT,b/m

2
T,b. The transverse momentum of the bottom quark can

be integrated out up to a factorization scale and yields a total cross section σtot ∝ log(µ2
F /m2

b +
1). Even though the logarithms log(pT,b/mb) which appear when we integrate the exclusive
cross section are not divergent they can become large. Switching to a bottom parton description
bg → tH− corresponds to a resummation of these potentially large logarithms. This procedure
relies on several approximations, which should be carefully examined.

First we assume that at leading order the intermediate bottom quark and therefore the outgo-
ing bottom jet are collinear with the incoming gluon. This approximation will never be perfect,
since the cutoff parameter mb is only slightly smaller than the minimum observable transverse
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Figure 1: Left: the bottom transverse momentum distribution for exclusive The curves are
given for the physical on-shell bottom mass 4.6 GeV as well as for a smaller bottom mass
as the infrared regulator. The thin dotted line indicates half the height of the plateau. Right:
in the upper panel the same distribution for a heavy charged Higgs boson, but with the gluon
luminosity set to unity. Below this in the two lower panels the same distribution for exclusive
neutral Higgs boson production gg → b̄bH .

momentum at a collider. We show this collinear behavior for the exclusive charged Higgs boson
production in Ref. [2].

After making sure that the collinear approximation describes the exclusive tree-level process
we still have to determine if there are large logarithms to resum. While the 1/mT,b behavior is by
definition present in the matrix element, this is not necessarily true for the differential hadronic
cross section dσ/dpT,b. In Fig. 1 we show the 1/pT,b behavior of the hadronic distributions.
First of all we see how the zero bottom mass approximation breaks down when the transverse
momentum is of the order of the bottom mass. If we replace the on-shell bottom mass with a
smaller value the plateau extends to smaller transverse momentum, confirming the asymptotic
behavior. The low end of the plateau in the transverse momentum spectrum, however, does
not lead to large numerical effects. For those we have to focus on the high pT,b end. We
see how the high pT,b end of the plateau roughly scales with the average mass in the final
state. This coincides with the observation that the only scales allowed for the evaluation of
total cross sections are external scales. They are typically chosen proportional to the average
mass of the final state particles µF ∼ Cmav where the proportionality factor C is arbitrary.
The curves shows that the naive choice C ∼ 1 is not appropriate. This choice assumes large
logarithms log(pmax

T,b /mb) which are resummed to values µF ∼ mav and it will therefore yield
an overestimate of the total cross section.

Evaluating the expression for the exclusive asymptotic total cross section for two bottom
masses we can determine the appropriate factorization scale µF . We obtain 185, 120, 80 GeV
for the three Higgs boson masses 1000, 500, 250 GeV, similar to our naive observation. This
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Figure 2: Left: the inclusive and exclusive production cross section pp → tH−. Both tree level
results are also quoted using the (inappropriate) pole mass for the bottom Yukawa coupling.
Right: the corresponding consistent K factors for the three values of tanβ = 5, 10, 30.

means that the appropriate factorization scale indeed scales with the average final state mass, but
with C ∼ 1/3. On the other hand we also emphasise that for associated charged Higgs boson
and top quark production the bottom parton treatment is justified — with an appropriate choice
of the bottom parton factorization scale. In the right panel of Fig. 1 we see that he asymptotic
behavior with the gluon luminosity set to unity extends to much larger values. This means that
the low scales observed in the left panel of Fig. 1 are due to the steeply falling gluon density
which suppresses any large transverse momentum radiation of forward bottom jets.

To prove the universality of our argument we show the same distribution for the exclusive
neutral Higgs boson production gg → bb̄H , which can be evaluated as partly [8] or com-
pletely [9] inclusive. The same reasoning as for the charged Higgs boson production applies in
this case. First one shows that the bottom quarks are collinear. Then one determines an appropri-
ate choice of the factorization scale. From the comparison of the two curves for a 1 TeV neutral
and a 1 TeV charged Higgs boson we see that the behavior is very similar: the bottom parton
description is valid, and the factorization scale should be chosen considerably below the respec-
tive final state mass. For a light neutral Higgs boson the asymptotic behavior only survives up
to pT,b � 40 GeV, which corresponds to a logarithmic enhancement log(pT,b/mb) � log 8 ∼ 2.

The applicability of the bottom parton approach is very closely tied to the reason why the
partly inclusive analyses are attractive: if the exclusive process exhibits a collinear final state
bottom jet this jet is not likely to hit the detector, much less to be tagged. This means that
the same feature which allows us to use the bottom parton approach makes it hard to utilize
the exclusive process: the final state bottom jet is too collinear to be particularly useful. We
therefore strongly advocate use of the inclusive cross section prediction, since the reliability of
the cross section predictions will be significantly improved beyond naive perturbation theory.

Next-to-leading Order Results for a Two Higgs Doublet Model

To improve the theoretical cross section prediction and to reduce the theoretical uncertainty
we compute the inclusive process pp → gb → tH− to next-to-leading order QCD. The correc-
tions include virtual gluon loops as well as gluon radiation. The massive supersymmetric loops
will be discussed in the next section. The strong coupling and the bottom Yukawa coupling are
renormalized in the MS scheme. This way αs and yb,t both are running parameters, dependent
on the renormalization scale µR. The numerical impact of the higher order contributions is
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Figure 3: The variation of the total inclusive cross section pp → tH− as a function of the
renormalization and factorization scales, around the central value µ = mav. The lower end of
the curves corresponds to µ ∼ 10 GeV.

shown in Fig. 2. The leading order results are given for the running bottom mass as well as
for the bottom pole mass in the Yukawa coupling. We want to stress, however, that the pole
mass Yukawa coupling always yields a huge overestimate of cross sections and should gener-
ally not be used [10]. The corrections described by the K factor are perturbatively well under
control, ranging from +30% to +40% for tan β = 30 and Higgs boson masses between 250
and 1000 GeV.

The QCD corrections are flavor blind and proportional to the Born coupling structure y2
b,t,

which as a function of tan β is either dominated by the top quark or by the bottom quark Yukawa
coupling. However, the shift in the consistent bottom Yukawa coupling absorbs another factor
y2

b,2−loop/y
2
b,1−loop ∼ 0.84, while the top Yukawa coupling is essentially stable. The difference

between the three curves for the K factor comes from the running Yukawa coupling, which is
dominantly bottom for large values of tanβ. The consequence is a larger K factor for smaller
values of tanβ.

In Fig. 3 we see that the leading order dependence of the cross section on the factorization
scale becomes large only once the bottom factorization scale comes close to the bottom mass,
where it has to vanish for µF → mb. To next-to-leading order the scale dependence stays flat
even for very small factorization scales. Assuming that light flavor quark initiated processes are
suppressed at the LHC the purely gluon initiated exclusive process gg → tH− + X dominates
for factorization scales µF → mb. This way the next-to-leading order inclusive calculation
interpolates between the inclusive and the exclusive results. At the one-loop level the next-to-
leading order inclusive cross section approaches the exclusive tree level result in the limit of no
large logarithms, where the enhancement through the resummation disappears.

The dominant theoretical uncertainty comes from the unknown renormalization scale of the
strong coupling. A small renormalization scale yields a larger strong coupling. Identifying
both scales inherently leads to a cancellation. Moreover, if we evaluate the cross section for
very small values µ/mav � 0.1 the next-to-leading order prediction increases rapidly. Phys-
ically this is not a problem, since the scales have to be very small, which is certainly not
appropriate for the renormalization scale. We know that for small scales the dependence on
the logarithms log(µF /mb) and log(µR/mH) largely cancels. However, terms proportional to
log(µF/mb)×log(µR/mH) become large. One way to look at this effect is that the unphysically
small renormalization scale gives a large negative prefactor for the factorization scale depen-
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dence, namely log(µ2
R/m2

H). This dominates the factor in front of log(µF/mb), which for more
appropriate renormalization scales is small and positive instead.

For a reasonably large renormalization scale almost the entire scale variation is driven by
the renormalization scale. This effect is well known from supersymmetric particle production
at the LHC: for processes mediated by a strong coupling at tree level, the scale variation is an
appropriate measure for the theoretical uncertainty. On the other hand, for weakly interacting
particles produced in Drell–Yan type processes, the leading order scale variation is dominated
by the factorization scale and is not a good measure for the theoretical uncertainty. In the
process considered here the remaining theoretical uncertainty can be estimated to be � 20% for
a central choice of scales.

Next-to-leading Order Results with Supersymmetry

Even though the Standard Model with a two doublet Higgs sector is a perfectly well-defined
renormalizable theory, we are particularly interested in the MSSM version of this model. There
the number of free tree level parameters in the Higgs sector is reduced to two, which are usually
chosen to be the pseudoscalar mass mA and tanβ. All next-to-leading order corrections to the
total cross section coming from supersymmetric loop diagrams we include in a supersymmetric
correction factor KSUSY = (σSUSY + σNLO)/σNLO

At one-loop order the off-diagonal entry in the sbottom mass matrix can connect a left
handed with a right handed bottom quark. Even though in the final result we neglect the bottom
mass we do have to take into account this contribution to the bottom mass counter term. This
mass counter terms ∆mb modifies the relation between the bottom mass and the bottom Yukawa
coupling [11, 12]. The authors of Ref. [12] have shown that this correction is the leading term
in powers of tanβ, where the charged Higgs boson search is promising. The reason why this
contribution is usually referred to as non-decoupling is that for large supersymmetric particle
masses in the loop and for a large trilinear mass parameter Ab or higgsino mass parameter µ, the
correction to the Yukawa coupling does not vanish. This is well understood, since at the one-
loop level it couples the ‘wrong’ Higgs doublet to the bottom quarks. To estimate how good the
leading tan β approximation given by ∆mb is, we also compute the whole set of MSSM loop
diagrams. The result for two different Higgs boson masses is shown in Fig. 4(a). To simplify
the presentation we choose a diagonal line in the mSUGRA parameter space: the scalar and
gaugino mass scales are identified mSUGRA = m0 ≡ m1/2. For the ∆mb corrections the sign
of the higgsino mass parameter is crucial: for µ < 0 we find ∆mb < 0, which enhances the
cross section. For the opposite sign of µ the ∆mb corrections to the production cross section
are negative. The supersymmetric corrections apart from the ∆mb corrections are negligible in
comparison with the ∆mb terms. This is a feature of the large value of tanβ and is even more
pronounced for tan β = 50 in Fig. 4(b). We note, however, that the picture changes significantly
once we do not run the higgsino mass parameter |µ| to large values, together with the other
heavy supersymmetric masses. In that case the ∆mb corrections decouple as shown in Fig. 4(c).
Moreover, for a value tan β = 10 the ∆mb correction drops below a ±2% effect, becoming even
smaller than the explicit MSSM loop corrections. We note, however, that choosing large values
for tan β and |µ| can in principle lead to almost arbitrarily large ∆mb effects, only limited by
unitarity constraints.

Heavy particle loops contribute to both the running strong coupling αs(µR) and the third
generation Yukawa coupling yb,t(µR). They give rise to supersymmetric counter terms and can
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Figure 4: The dependence of the total cross section pp → tH− + X on supersymmetric loop
contributions. The mass scale is defined as mSUGRA = m0 ≡ m1/2: (a) corrections for tanβ =
30 and with a running higgsino mass parameter; (b) same as (a), but with tan β = 50; (c)
same as (a), but with µ fixed at its value for mSUGRA = 150 GeV; (d) same as (a), but without
decoupling the heavy spectrum from the running Yukawa coupling.

thereby yield a logarithmic divergence log(mheavy/µR) in the cross section. On the other hand
we use Standard Model measurements for these observables, which means that their running
has to be governed by the light particle beta function. The contributions from heavy particles
to their beta function has to be explicitly cancelled, and as expected this decoupling absorbs
all logarithmically divergences in the one-loop cross section. We show the (misleading) result
one would get without decoupling the heavy particles from the running Yukawa coupling in
Fig. 4(d).

Summary
For the inclusive process pp → tH− we show why the bottom parton approach is valid and

gives a numerically reliable prediction for the cross section. The one-loop contributions hugely
improve the theoretical uncertainty of the leading order cross section prediction to � 20%. The
over-all corrections to the total cross section in the two Higgs double model range between
+30% and +40% for Higgs boson masses between 250 and 1000 GeV for the average final
state mass scale choice.

Two kinds of supersymmetric corrections appear in addition: the on-shell renormalization
of the bottom quark mass alters the relation between the bottom mass and the bottom Yukawa
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coupling. These ∆mb corrections are the leading supersymmetric one-loop corrections with
respect to powers of tan β. Their effect on the total cross section in a simple mSUGRA model
we estimate to stay below ±5% for tanβ = 30 and below ±20% for tanβ = 50. Because
the charged Higgs boson searches are most promising in the large tanβ regime the remaining
explicit supersymmetric loop diagrams only contribute on a negligible few percent level.
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