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We present in this talk the results of a recent computation of the two–loop sbottom

corrections to the MSSM Higgs masses [1]. At the tree level, the masses of the neutral CP–

even Higgs bosons of the MSSM can be computed in terms of three input parameters: the

mass mA of the neutral CP–odd particle, the mass mZ of the weak neutral gauge boson,

and the ratio of Higgs vacuum expectation values tanβ ≡ v2/v1. For tan β � mt/mb,

the dominant one–loop corrections are the O(αt) ones, where αt ≡ h2
t/(4π) and ht is the

superpotential top coupling. Such coupling controls both the top–Higgs Yukawa couplings

and a number of cubic and quartic stop–Higgs scalar couplings, and leads to significant

contributions from both top and stop loops [2]. The O(αb) one–loop corrections associated

with the superpotential bottom coupling hb, where αb ≡ h2
b/(4π), can be numerically non–

negligible only for tanβ � 1 and sizeable values of the µ parameter. At the classical level

hb/ht = (mb/mt) tanβ, thus we need tanβ � 1 to have αb ∼ αt in spite of mb � mt.

Moreover, and in contrast with the top–stop case, numerically relevant contributions can

only come from sbottom loops: those coming from bottom loops are always suppressed

by the small value of the bottom mass. A sizeable value of µ is then required to have

sizeable sbottom–Higgs scalar interactions in the large tanβ limit.

We are now at the stage where the most important genuine two–loop corrections are

being evaluated: general results have been obtained both for the O(αtαs) [3, 4, 5] and

for the O(α2
t ) [3, 6, 7] corrections. In Ref. [1] we moved one step further, computing the

O(αbαs) corrections and discussing the O(α2
b) and O(αtαb) ones. For convenience, we

evaluated two–loop effects directly in the physically relevant limit of large tanβ:

v1 → 0 , v2 → v ≡ (
√
2Gµ)

−1/2 , (1)

where Gµ is the Fermi constant. As a result, we obtained extremely compact analytical

formulae. Keeping v1 �= 0 would only generate more complicated expressions, without

adding any relevant information.
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The momentum–independent part of the one–loop O(αb) and two–loop O(αbαs) cor-

rections to the neutral CP–even Higgs boson mass matrix can be obtained by taking the

second derivatives of the effective potential 1 at its minimum, or by performing appro-

priate substitutions and limits in the O(αtαs) results of [5]. In the limit of Eq. (1), we

find:
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Our conventions are such that, at the classical level, the top and bottom quark masses

are given by mt = htv2/
√
2 and mb = hbv1/

√
2, where the Yukawa couplings (ht, hb) and

the VEVs (v1, v2) are all taken to be real and positive. In addition, we assume µ and

Ab to be real, but we do not make any assumption on their sign, whereas we choose the

gluino mass mg̃ to be real and positive. At the classical level, the sbottom mixing angle

s2θb
≡ sin 2θb̃ is given by

s2θb
=

√
2hb(Ab v1 + µ v2)

m2
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where the arrow denotes the large tanβ limit, and m2
b̃1
> m2

b̃2
are the two eigenvalues of

the sbottom mass matrix. Finally, the superscripts in the functions (F, G) indicate the

order of the loop contribution. At one loop, and in the large tanβ limit, the only relevant

function is

F 1� =
Nc

16 π2


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+m2
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ln
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
 , (6)

where Nc = 3 is a color factor. Notice that F
1� is negative definite.

In Ref. [1], we started our discussion by presenting the results for F 2� and G2� in the

DR scheme, i.e. assuming that the O(αb) one–loop contribution is written entirely in

terms of DR parameters (masses and couplings), evaluated at a certain renormalization

scale Q. This way of presenting the results is convenient for analysing models that predict,

via the MSSM renormalization group equations, the low–energy DR values of the MSSM

input parameters in terms of a more restricted set of parameters, assigned as boundary

conditions at some scale much larger than the weak scale. General low–energy analyses of

the MSSM parameter space, however, do not refer to boundary conditions at high scales.

These analyses are usually performed in terms of parameters with a more direct physical

interpretation, such as pole masses and appropriately defined mixing angles in the squark

1The effective potential for vanishing CP–odd fields was computed in [6]. To make contact with the
physical mA, the effective potential should be computed as a function of both CP–even and CP–odd
fields, as in [5].
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sector. Such an approach requires modifications of our two–loop DR formulae, induced by

the variation of the one–loop parameters when moving from the DR scheme to a different

scheme. We recall that, at the one–loop level, the two VEVs (v1, v2) and the mass param-

eter µ are not renormalized by the strong interactions. Therefore, the only parameters

in the Higgs mass matrix that require a one–loop definition are (hb, Ab, s2θb
, mb̃1

, mb̃2
),

although only four of these are independent, because of the relation (5).

The sbottom masses (m2
b̃1
, m2

b̃2
) in Eq. (6) can be naturally identified with the pole

masses. For the generic parameter x, we define the shift from the DR value x̂ as δx ≡ x̂−x.
According to this definition, we find δm2

b̃i
≡ Πii(m

2
b̃i
), where Πij(p

2) denotes the real and

finite part of the (ij) component of the sbottom self–energy (i, j = 1, 2). Explicitly, in

units of g2
s CF/(16π

2):

δm2
b̃1

= m2
b̃1


3 ln m

2
b̃1

Q2
− 3− c22θb


ln m

2
b̃1

Q2
− 1


 − s2

2θb

m2
b̃2

m2
b̃1


ln m

2
b̃2

Q2
− 1




−6m
2
g̃

m2
b̃1

− 2

1− 2m

2
g̃

m2
b̃1


 ln m

2
g̃

Q2
− 2


1− m2

g̃

m2
b̃1




2

ln

∣∣∣∣∣∣1−
m2

b̃1

m2
g̃

∣∣∣∣∣∣


 , (7)

and δm2
b̃2
is obtained from Eq. (7) by the interchange m2

b̃1
↔ m2

b̃2
.

The most convenient definition of (hb, Ab, s2θb
) is less easily singled out. To clarify this

point, we recall the parallel case of the O(αtαs) corrections. In that case, besides the stop

pole masses, the remaining independent parameters are chosen to be [4, 5] a conveniently

defined stop mixing angle, s2θt , and the top Yukawa coupling h
pole
t , as defined by the top

pole mass Mt via the relation Mt ≡ hpole
t v2/

√
2. Then, the stop counterpart of Eq. (5) is

used to establish the one–loop definition of At in terms of the pole top and stop masses and

of the stop mixing angle. In the case of the O(αbαs) corrections, a similar procedure is not

appropriate since, as can be easily seen from Eq. (5), s2θb
is independent of Ab in the large

tan β limit. A second complication arises from the large one–loop threshold corrections

[8] proportional to v2 that contribute to the pole bottom mass: for our calculation, the

relevant ones are those O(αs), associated with one–loop SQCD diagrams with gluinos

and sbottom quarks on the internal lines. As noticed in [9], a definition of Ab in terms

of the pole bottom and sbottom masses through Eq. (5) would produce very large shifts

in Ab with respect to its DR value, δAb = O(αs µ
2 tan2 β/mg̃). A DR definition for the

parameters (hb, Ab, s2θb
) would avoid this problem, but would still suffer from the known

fact that it does not make manifest the decoupling of heavy particles, for example a heavy

gluino.

We then look for definitions of the relevant parameters that automatically include the

decoupling of heavy gluinos, allow to disentangle the genuine two–loop effects from the

large threshold corrections to the bottom mass, and provide a consistent prescription for

Ab in the large tanβ limit. A suitable definition of the mixing angle θb, with the virtue of

being infrared (IR) finite and gauge–independent with respect to the strong interaction,
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is [10]:

δθb̃ =
1
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where Π12(p
2) turns out to be independent of p2 in the large tanβ limit. Since v and µ

are not renormalized by the strong interactions, Eqs. (5) and (7) can be used, in the large

tan β limit, to translate the prescription for θb̃ into a prescription for hb. Explicitly, in

units of g2
s CF/(16π

2):
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(9)

We stress that our renormalized hb, as defined above, differs at the one–loop level both

from the DR quantity ĥb and from the quantity hpole
b that would be obtained by plugging

the pole bottom mass, Mb, into the tree–level formula: hb �= hpole
b ≡ √

2Mb/v1.

Concerning the definition of Ab, we observe that the Yukawa coupling hb multiplying

Ab can be absorbed in a redefinition of the trilinear soft–breaking term, Ãb ≡ hbAb. The

shift in Ãb could be defined via a physical process, e.g. one of the decays b̃1 → b̃2A or

A→ b̃1 b̃
∗
2, but such a definition would suffer from the problem of infrared (IR) singularities

associated with gluon radiation. To overcome this problem, and given our ignorance of

the MSSM spectrum, we find less restrictive to define δÃb in terms of the (b̃1b̃
∗
2A) proper

vertex, at appropriately chosen external momenta and including suitable wave function

corrections, so that the resulting combination is IR finite and gauge–independent, and

gives rise to an acceptable heavy gluino limit. Denoting the proper vertex b̃1b̃
∗
2A with

iΛ12A(p
2
1, p

2
2, p

2
A), we define

2:
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Ãb

Π11(m
2
b̃1
) + Π22(m

2
b̃1
)− Π11(m

2
b̃2
)− Π22(m

2
b̃2
)

m2
b̃1
−m2

b̃2

. (10)

Writing δÃb = δhbAb + hb δAb , we find, in units of g
2
s CF/(16π

2):
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
4− 2 ln
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With our one–loop specifications of hb and Ab, Eqs. (9) and (11), the CP–even Higgs

boson mass matrix takes again the form of Eqs. (2)–(4), but the one–loop part of the

corrections must now be evaluated in our renormalization scheme, and the functions F 2�

2This definition is suitable at O(αs). It can be generalized to the case of Yukawa corrections by
specifying a prescription for the A wave function.
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and G2� read, in units of g2
s CF Nc/(16 π

2)2:
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Notice that, in this scheme, F 2� and G2� do not depend explicitly on Q. We also stress

that, in terms of our renormalized quantities (m2
b̃1
, m2

b̃2
, hb, Ab), the corrections have a

smooth heavy gluino limit. In fact, in contrast with the case of the O(αtαs) corrections,

the gluino decouples for mg̃ → ∞, since mg̃ G
2� → 0 and F 2� reduces to the first line of

Eq. (12).

Phenomenological analyses of the MSSM parameter space should exploit the experi-

mental information on the bottom mass. Instead of expressing such information with the

pole mass Mb, it is convenient to use directly the running mass, in the SM and in the DR

scheme, evaluated at the reference scale Q0 = 175 GeV. Following a procedure outlined

in [11], we take as input the SM bottom mass in the MS scheme, mb(mb)
MS
SM = 4.23± 0.08

GeV, as determined from the Υ masses [12]; we evolve it up to the scale Q0 by means of

suitable renormalization group equations; finally, we convert it to the DR scheme. The

result, which accounts for the resummation of the universal large QCD logarithms, is

mb ≡ mb(Q0)
DR
SM = 2.74 ± 0.05 GeV. The relation between ĥb ≡ hb(Q0)

DR
MSSM and mb is

given by:

ĥb ≡ hb(Q0)
DR
MSSM =

mb

√
2

v1

1 + δb
|1 + εb| , (14)
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δb =
αs

3π
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
3

2
− ln m

2
g̃

Q2
0



1A: Higgs Collider Physics 653

tanβ = 40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-4 -3 -2 -1 0 1 2 3 4

µ (TeV)

h b

hb

√2


 Mb/v1

µ = 1.2 TeV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60

tanβ

h b

hb

√2


 Mb/v1

Figure 1: The Yukawa coupling hb, as defined in Eq. (14): as a function of µ for tanβ = 40

(left panel); as a function of tanβ for µ = 1.2 TeV (right panel). The other parameters

are Ab = 2 TeV, mQ = mD = mg̃ = 1 TeV. The quantity h
pole
b ≡ √

2Mb/v1 is also shown

for comparison.
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The running parameter ĥb is the appropriate input quantity to be used with the DR

result, while the formulae obtained in our renormalization scheme should be used with

hb = ĥb − δhb, evaluating Eq. (9) for Q = Q0. Notice that in Eq. (14) the large O(αs)

threshold corrections [8] parametrized by εb have been resummed to all orders as in [13].

We are now ready for some numerical examples. To prepare the ground, we study the

variation of our renormalized hb with respect to other parameters, keeping the reference

bottom mass mb fixed to 2.74 GeV. The left panel of Fig. 1 shows hb as a function of µ

(solid line), for tanβ = 40. The other relevant parameters are chosen as Ab = 2 TeV,

mQ = mD = mg̃ = 1 TeV, where mQ and mD are soft supersymmetry–breaking masses.

The quantity hpole
b =

√
2Mb/v1 is also shown as a dashed line. The curve corresponding

to ĥb would be very close to that of hb, thus we do not display it. We see that having large

values of tanβ and µ is a necessary but not sufficient condition for having a sizeable hb:
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when the threshold contribution to the bottom mass dominates, |εb| � 1, hb must decrease

for increasing values of |µ| tanβ. We also see that, when there is an almost complete
destructive interference between the two contributions to the bottom mass, εb � −1,
the correct value of the bottom mass cannot be reproduced by the one–loop formula for

hb in the perturbative regime, and the corresponding set of MSSM parameters must be

discarded. Finally, we can see that the renormalized hb can be large only for positive
3

values of µ. We then focus our attention on the case in which µ is large and positive, so

that hb and the corresponding corrections to the Higgs masses can be sizeable.

For completeness, we should mention (for recent discussions and references, see e.g.

[14]) that models with b–τ Yukawa coupling unification at the GUT scale favour, in our

conventions, a positive sign of µmg̃, which leads to a negative εb. For sufficiently small |µ|,
radiative B decays and the muon anomalous magnetic moment may favour a negative sign

of µM2, whereM2 is the SU(2) gaugino mass, and a positive sign of µAt. Similar but more

model–dependent constraints can be extracted, with the help of additional assumptions

on the soft supersymmetry–breaking terms, from the cosmological relic density.

The right panel of Fig. 1 shows hb as a function of tanβ, for µ = 1.2 TeV. Again,

the curve for ĥb would be practically indistinguishable and we do not show it. The other

parameters are chosen as in the left panel, and the value of hpole
b is also shown. We can see

that, for this choice of parameters (to be taken in the following as a representative one),

values of tanβ much larger than 40–50 would imply a value of hb beyond the perturbative

regime. On the other hand, for low values of tanβ the coupling hb is even smaller than

hpole
b , and the corresponding corrections to the Higgs masses are expected to be negligible.

For this reason, in the numerical examples of the O(αbαs) corrections we restrict ourselves

to values of tan β between 25 and 45. Fig. 2 shows the light Higgs mass mh as a function

of tan β for µ = 1.2 TeV. The left panel corresponds to mA = 120 GeV and the right

panel to mA = 1 TeV . The other input parameters are chosen as At = Ab = 2 TeV,

mQ = mU = mD = mg̃ = 1 TeV. The curves in Fig. 2 correspond to the one–loop

corrected mh at O(αt) (long–dashed line) and at O(αt+αb) (dot–dashed line), and to the

two–loop corrected mh at O(αtαs) (short–dashed line) and at O(αtαs+αbαs) (solid line),

respectively. We can see from Fig. 2 that, while the O(αt) prediction for mh is practically

independent of tanβ for tanβ > 25, the O(αb) corrections lower mh considerably when

tan β increases. This effect is enhanced by the steep dependence of the renormalized

coupling hb on tanβ, depicted in Fig. 1. Comparing the solid and the short–dashed

curves, we can see that the ‘genuine’ two–loop O(αbαs) corrections to the Higgs mass,

given by Eqs. (2)–(4) and (12)–(13), are usually a small fraction of the O(αb) ones, but

the former can still reach several GeV when the latter are very large. In particular, for

small mA the O(αbαs) corrections can be comparable in magnitude with the O(αtαs)

ones. We stress that the absence of very large two–loop effects from the sbottom sector

is a consequence of our renormalization prescription, which allows to set apart the tanβ–

3Our convention for the sign of µ is implicitly defined in Eq. (5).
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Figure 2: The mass mh as a function of tanβ, for mA = 120 GeV (left panel) or 1 TeV

(right panel). Other parameters are µ = 1.2 TeV, At = Ab = 2 TeV, mQ = mU = mD =

mg̃ = 1 TeV.

enhanced corrections, resummed to all orders in the renormalized coupling hb. If we were

to adopt for the sbottom sector the same renormalization scheme that we use for the

stop sector, the dependence on tanβ of the one–loop corrected mh would be smoother,

but very large corrections (growing as tan2 β) would appear at two loops, questioning the

validity of the perturbative expansion.
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