SUSY02 at DESY, June 2002

$\frac{\text{Determination of } \tan \beta}{\text{at a Future } e^+e^- \text{ LC}}$

Jack Gunion¹ Tao Han² Jing Jiang³ Steve Mrenna⁴ André Sopczak⁵

1...U.C. Davis, 2...University of Wisconsin, 3...Argonne N.Lab 4...Fermilab, 5...Lancaster University

Outline

- Introduction
- $b\overline{b}A \rightarrow b\overline{b}b\overline{b}$ simulation
- \bullet High luminosity: 2000 $\rm fb^{-1}$
- $HA \rightarrow b\overline{b}b\overline{b}$ event rate
- \bullet H and A width from HA \rightarrow $b\overline{b}b\overline{b}$
- New aspect: $H^+H^- \rightarrow t\bar{b}\bar{t}b$
- Conclusions

Introduction

• Framework:

Two-Higgs Doublet Model or MSSM.

- Production and Decay of A, h, H, and H^{\pm} .
- Considered reactions for TESLA: strong dependence on $\tan \beta$.
- Extrapolation $b\overline{b}A \rightarrow b\overline{b}b\overline{b}$ for $100 < m_A < 200$ GeV.
- Estimate of $HA \rightarrow b\overline{b}b\overline{b}$ event rate.
- Estimate of H and A width determination.
- Estimate of charged Higgs bosons branching ratio and decay width.

b-tagging

Experimental potential depends strongly on the b-tagging performance.

Hadronic events $e^+e^- \rightarrow q\bar{q}$ (5 flavors).

Efficiency: Ratio of simulated $b\overline{b}$ events after the selection to all simulated $b\overline{b}$ events.

Purity: Ratio of simulated $b\overline{b}$ events after the selection to all selected $q\overline{q}$ events.

$b\overline{b}A$ Simulation

Simulated Higgs boson mass: 100 GeV

Channel	bbA	qq	WW	$eW\nu$	tt	ZZ	eeZ	hA	sum
(in 1000)	50	6250	3500	2500	350	300	3000	50	16000
After Presel.	73%	20991	7481	0	89983	10278	145	12665	141544

Simulated hA rate corresponds to twice the luminosity (maximum cross section in general Two-Higgs Doublet Model).

Signal and Background

Interference: $b\overline{b}A hA \rightarrow b\overline{b}b\overline{b}$

Expectation before event selection:

$$\sigma_{bbA} \equiv \sigma(e^+e^- \rightarrow bbA \rightarrow b\bar{b}b\bar{b})$$

$$\sigma_{hA} \equiv \sigma(e^+e^- \rightarrow hA \rightarrow b\bar{b}b\bar{b})$$

$$\sigma_{b\bar{b}A+hA} \equiv \sigma(e^+e^- \rightarrow b\bar{b}A, hA \rightarrow b\bar{b}b\bar{b})$$

$$\sigma_{interf} = \sigma_{b\bar{b}A+hA} - \sigma_{b\bar{b}A} - \sigma_{hA}.$$

For
$$m_{\rm b} = 4.62$$
 GeV:
 $\sigma_{\rm b\overline{b}A} = 1.83 \pm 0.01$ fb
 $\sigma_{\rm hA} = 36.85 \pm 0.10$ fb
 $\sigma_{\rm b\overline{b}A+hA} = 39.23 \pm 0.12$ fb
 $\sigma_{\rm interf} = 0.55 \pm 0.16$ fb

Positive interference, reduction in statistical error.

Interference: $b\overline{b}A \ hA \rightarrow b\overline{b}b\overline{b}$

Expectation after event selection:

 $100 \ b\overline{b}A \rightarrow b\overline{b}b\overline{b}$ events

 $2 \pm 1 \text{ hA} \rightarrow b\bar{b}b\bar{b}$ events.

Maximum interference magnitude:

 $(10+1.4)^2 - 100 - 2 \approx 28$

Similar ratio of interference to signal 30% before and after event selection.

Interference events:

background-like: small systematic error.

signal-like: large systematic error.

Solution: fit signal and background to data for various $\tan \beta$.

Another systematic error is the running b-mass. Higher-order corrections should be very precisely known by the time the LC is constructed. A. Sopczak

$b\overline{b}A$ Results for 500 fb⁻¹

For $\tan \beta = 50$ and $m_{\rm A} = 100$ GeV: $\Delta \tan \beta / \tan \beta = 0.07.$

$$\Delta \tan^2 \beta / \tan^2 \beta = \Delta N_{\text{signal}} / N_{\text{signal}}$$

 $=\sqrt{N_{\text{signal}} + N_{\text{background}}}/N_{\text{signal}} = 0.14.$

Smaller values of tan β , the sensitivity decreases rapidly. 5σ signal detection for tan $\beta = 35$.

MSSM: $b\bar{b}h$ would double the number of signal events and have the same tan β dependence:

 $\Delta \tan^2 \beta / \tan^2 \beta \sim \sqrt{300} / 200 \approx 0.085$ For $\tan \beta = 50$ and $m_{\rm A} = m_{\rm h} = 100$ GeV: $\Delta \tan \beta / \tan \beta = 0.04.$

(For heavier A, $b\overline{b}H$ will contribute).

Experimental challenge:

at 10% efficiency, $\Delta \tan\beta / \tan\beta < 0.05$

requires $\Delta \epsilon / \epsilon < 0.1$, thus $\Delta \epsilon < 1\%$.

At 100 GeV: 1000 events. At 200 GeV: 200 events.

A. Sopczak

${\rm HA} \rightarrow {\rm b} \overline{\rm b} {\rm b} \overline{\rm b}$ Event Rate

Assume b-tagging purity 80% per $b\overline{b}$ pair, thus 40% signal efficiency.

For $b\overline{b}b\overline{b}$: 16% efficiency.

Further reduction: kinematic event selection: final efficiency 10%, and negligible background.

Small $\tan \beta$: constant MSSM cross section and large variation of branching fraction.

Typical expected signal rate for 2000 fb^{-1}

and $m_{\rm A} = m_{\rm H} = 200 \text{ GeV}$

for $\tan \beta = 5$: 500 events.

 $\Delta \tan \beta / \tan \beta \approx 0.01$

Nice overlap with $b\overline{b}A$ results.

H and A width from $HA \rightarrow b\overline{b}b\overline{b}$

Assumption: 5 ± 0.5 GeV detector resolution. Reconstruction of mean H and A widths from $b\overline{b}$ -mass.

There are two $b\overline{b}$ masses per event.

Wrong jet-jet pairings: 25%.

Available statistics for mass reconstruction:

 $1.5 \text{ HA} \rightarrow b\overline{b}b\overline{b}$ rate.

Determination of intrinsic Higgs width

by convolution with detector resolution.

 $0.5(\Gamma_{\rm H} + \Gamma_{\rm A}) = 12.5 \pm 0.54 \,\,{\rm GeV},$

dominated by error on detector resolution.

 $\Delta \tan \beta / \tan \beta < 0.02$ for $\tan \beta = 55$.

$e^+e^- \to H^+H^- \to t\bar{b}\bar{t}b$

- 500 GeV and 10 fb⁻¹,
 the charged Higgs can be reconstructed
 Z. Phys. C 65 (1995) 449.
- 800 GeV and 1000 fb⁻¹, high precision reconstruction,
 M. Battaglia, A. Ferrari, A. Kiiskinen, T.M. Ki, hep-ph/0112015.
- Sensitivity for 500 GeV and 1000 fb⁻¹, for a 200 GeV charged Higgs boson mass: uncertainty about 0.5 GeV.
- Very similar uncertainty as for the HA.
- Similar precision on $\tan \beta$ as from HA production $\Delta \tan \beta / \tan \beta \approx 0.02$ for $\tan \beta = 5$.

Further information on $\tan \beta$

- $tbH^{\pm} \rightarrow tb\tau\nu$
 - J. L. Feng and T. Moroi, Phys. Rev. D 56, 5962 (1997).
- A width from $b\overline{b}A \rightarrow b\overline{b}b\overline{b}$
- Scalar taus (E.Boos et.al.)

Conclusions

Experimental challenges:

- High luminosity needed.
- Best possible b-tagging performance.
- Precision detector resolution measurement.
- Combined analyses, e.g. Fit of all $b\overline{b}b\overline{b}$ processes as function of $\tan \beta$.
- Precision determination of signal efficiency.
- Precision cross section and decay width meas.
- $b\overline{b}A \rightarrow b\overline{b}b\overline{b}$
- $HA \rightarrow b\overline{b}b\overline{b}$
- $H^+H^- \rightarrow t\bar{b}\bar{t}b$

TESLA: Precision determination of $\tan \beta$ with different independent complementary methods.