OVERVIEW OF $\tan \beta$ DETERMINATION AT A LINEAR e^+e^- COLLIDER

John GUNION¹, Tao HAN², Jing JIANG³, Andre SOPCZAK^{4*}

¹Davis Institute for HEP, U. of California, Davis, CA ²Dept. of Physics, U. of Wisconsin, Madison, WI ³Argonne National Laboratory, Chicago, IL ⁴Lancaster University, UK

Abstract

The ratio of the vacuum expectation value of the two Higgs doublets, $\tan \beta$, is an important parameter of the general 2-Higgs-Doublet Model (2HDM) and the Minimal Supersymmetric extension of the Standard Model (MSSM). The expected uncertainty on the determination of $\tan \beta$ at a Linear Collider (LC) of at least 500 GeV center-of-mass energy and high luminosity is reviewed based on studies of neutral and charged Higgs boson production.

Introduction

Various methods to determine $\tan \beta$ at a LC exist and they have in common that a physical observable depends on $\tan \beta$:

- The pseudoscalar Higgs boson, A, could be produced via radiation off a pair of b-quarks: $e^+e^- \to b\bar{b} \to b\bar{b}A \to b\bar{b}b\bar{b}$. The $b\bar{b}A$ coupling is proportional to $\tan\beta$ and thus the expected production rate is proportional to $\tan^2\beta$.
- The bbbb rate from the pair-production of the heavier scalar, H, in association with the pseudoscalar Higgs boson $e^+e^- \to HA \to b\bar{b}b\bar{b}$ can be exploited. While the HA production rate is almost independent of $\tan \beta$ the sensitivity occurs via the variation of the decay branching ratios with $\tan \beta$.
- The value of $\tan \beta$ can also be determined from the H and A decay widths, which can be obtained from the previously described reaction.
- The $t\overline{b}$ tb rate from charged Higgs boson production can contribute to the determination of $\tan \beta$ from the reaction $e^+e^- \to H^+H^- \to t\overline{b}$ tb because of the charged Higgs boson branching ratio variation with $\tan \beta$.
- In addition, the charged Higgs boson total decay width depends on $\tan \beta$.

^{*}speaker

The $b\overline{b}A \rightarrow b\overline{b}b\overline{b}$ bremsstrahlung process

The experimental challenge of this study is the low expected production rate and the large irreducible background for a four-jet final state, as discussed in a previous simulation [1]. The expected background rate for a given $b\overline{b}A \to b\overline{b}b\overline{b}$ signal efficiency is shown in Fig. 1. Taking a working point of 10% efficiency, we estimate the statistical error in determining $\tan \beta$ by $\Delta \tan^2 \beta / \tan^2 \beta = \Delta S/S = \sqrt{S + B}/S = \sqrt{200}/100 \approx 0.14$, resulting in an error on $\tan \beta = 50$ of 7%. In the MSSM, the bbh signal would essentially double the number of signal events and have exactly the same $\tan \beta$ dependence, yielding $\Delta \tan^2 \beta / \tan^2 \beta \approx \sqrt{300}/200 \approx 0.085$ for $\tan \beta = 50$ and the $\tan \beta$ error would be about 4%. Systematic errors arising from interference with the hA $\to b\overline{b}b\overline{b}$ reaction can be controlled [2].

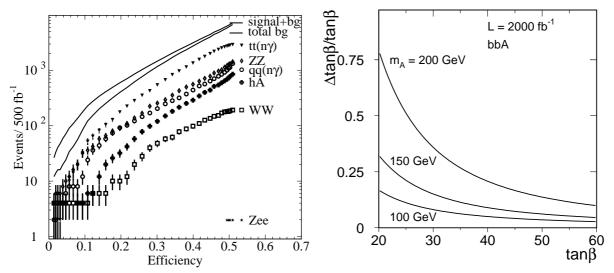


Figure 1: Left: Final background rate versus $b\overline{b}A$ signal efficiency for $m_A = 100$ GeV, $\sqrt{s} = 500$ GeV and $\mathcal{L} = 500$ fb⁻¹. Right: Corresponding $\tan \beta$ statistical error for $\mathcal{L} = 2000$ fb⁻¹ and $m_A = 100, 150, 200$ GeV. For both plots, we take a fixed value of $m_b = 4.62$ GeV.

HA production: branching ratios and decay widths

The branching ratios for H, A decay to various allowed modes vary rapidly with $\tan \beta$ in the MSSM when $\tan \beta$ is below 20. Consequently, if these branching ratios can be measured accurately, $\tan \beta$ can be determined with good precision in this range. As the H and A decay rates depend on the MSSM parameters, two cases are considered. In scenario (I), SUSY decays of the H and A are kinematically forbidden. Scenario (II) is taken from [3] in which SUSY decays (mainly to $\tilde{\chi}_1^0 \tilde{\chi}_1^0$) are allowed. We assume event selection criteria with an event selection efficiency of 10% and negligible background, based on the expected b-tagging performance and kinematic event selection. The expected HA $\rightarrow b\bar{b}b\bar{b}$ event rates and 1σ statistical bounds are shown in Fig. 2 as a function of $\tan \beta$ for $\sqrt{s} = 500$ GeV and $\mathcal{L} = 2000$ fb⁻¹. The resulting bounds for $\tan \beta$ are plotted in Fig. 3 (right) for MSSM scenarios (I) and (II).

682 Parallel Sessions

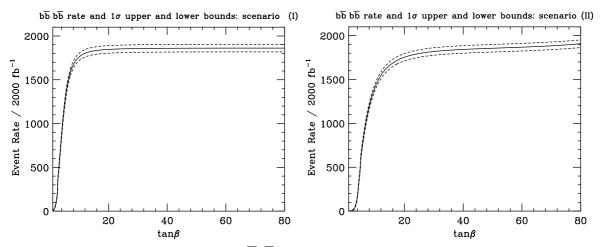


Figure 2: Expected $e^+e^- \to HA \to b\overline{b}b\overline{b}$ event rates for 10% efficiency and $\pm 1\sigma$ bounds in scenarios (I) and (II) in the MSSM for $m_A = 200$ GeV, $\sqrt{s} = 500$ GeV and $\mathcal{L} = 2000$ fb⁻¹.

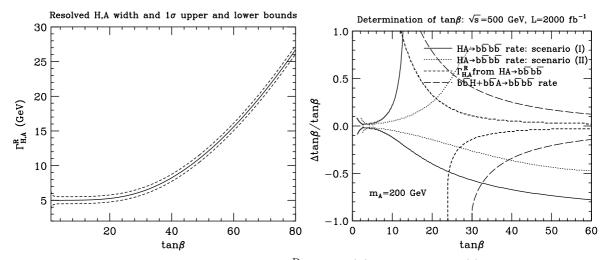


Figure 3: Left: Expected resolved width $\Gamma^{\rm R}_{\rm H,A}$, Eq. (1), for scenario (I) and 1σ upper and lower bounds with 10% selection efficiency. The statistical bounds include an additional efficiency factor of 0.75 for keeping only events in the central mass peak and assume a detector resolution of $\Gamma_{\rm res}=5~{\rm GeV}$ with a 10% uncertainty. Right: Expected precision on $\tan\beta$ (1σ bounds) for $m_{\rm A}=200~{\rm GeV}$, $\sqrt{s}=500~{\rm GeV}$ and $\mathcal{L}=2000~{\rm fb}^{-1}$ based on the ${\rm e}^{+}{\rm e}^{-}\to {\rm b\bar{b}A}+{\rm b\bar{b}H}\to {\rm b\bar{b}b\bar{b}}$ rate, the ${\rm e}^{+}{\rm e}^{-}\to {\rm HA}\to {\rm b\bar{b}b\bar{b}}$ rate and $\Gamma^{\rm R}_{\rm H,A}$.

A previous HA simulation [5] indicates that about 25% of the time wrong jet-pairings are made, which are attributed to the wings of the mass distribution. The $m_{b\overline{b}}$ values from H and A decays are binned in a single distribution, since the H and A mass splitting is typically substantially smaller than the detector resolution of $\Gamma_{res} = 5$ GeV for the large tan β values considered. Our effective observable is the resolved average width defined by

$$\Gamma_{\rm H,A}^{\rm R} = \frac{1}{2} \left[\sqrt{[\Gamma_{\rm tot}^{\rm H}]^2 + [\Gamma_{\rm res}]^2} + \sqrt{[\Gamma_{\rm tot}^{\rm A}]^2 + [\Gamma_{\rm res}]^2} \right]. \tag{1}$$

Its dependence on $\tan \beta$ is shown in Fig. 3 for $m_{\rm H} \approx m_{\rm A} = 200$ GeV in MSSM scenario (I) and it is very similar for scenario (II).

In order to extract the implied $\tan\beta$ bounds, we must account for the fact that the detector resolution will not be precisely determined. There will be a systematic uncertainty which we have estimated at 10% of $\Gamma_{\rm res}$, i.e. 0.5 GeV. This systematic uncertainty considerably weakens our ability to determine $\tan\beta$ at the lower values of $\tan\beta$ for which $\Gamma_{\rm tot}^{\rm H}$ and $\Gamma_{\rm tot}^{\rm A}$ are smaller than $\Gamma_{\rm res}$. This systematic uncertainty should be carefully studied as part of future experimental analyses. Figure 3 shows also the expected $\pm 1\sigma$ experimental errors based on the measurement of $\Gamma_{\rm H,A}^{\rm R}$. An excellent determination of $\tan\beta$ will be possible at high $\tan\beta$. The bbH/A and H/A width methods are nicely complementary in their $\tan\beta$ coverage to the $\tan\beta$ determination based on the HA \rightarrow bbbb rate method at lower $\tan\beta$.

H⁺H⁻ production: branching ratios and decay widths

The reaction $e^+e^- \to H^+H^- \to t\bar{b}\bar{t}b$ can be observed at a LC [6] and recent highluminosity simulations [7] show that precision measurements can be performed. As soon as the charged Higgs boson decay into tb is allowed this decay mode is dominant. Nonetheless, BR(H[±] \to tb) varies significantly with $\tan \beta$, especially for small values of $\tan \beta$ where the tb mode competes with the $\tau\nu$ mode. The H⁺ \to tb branching ratio and width are sensitive to $\tan \beta$ in the form $\Gamma(H^{\pm} \to tb) \propto m_t^2 \cot^2 \beta + m_b^2 \tan^2 \beta$. As in the previous section, we use HDECAY [4] (which incorporates the running of the b-quark mass) to evaluate the charged Higgs boson branching ratios and decay widths. The tb partial width and the corresponding branching ratio have a minimum in the vicinity of $\tan \beta \approx 6 - 8$. In contrast to the variation of the branching ratio, the cross section for $e^+e^- \to H^+H^$ production is largely independent of $\tan \beta$.

Our procedures for estimating errors for the $t\overline{b}$ tb rate and for the total width are similar to those given earlier for HA production rate and width in the $b\overline{b}b\overline{b}$ channel. For $m_{H^{\pm}} = 300$ GeV at $\sqrt{s} = 800$ GeV, a H⁺H⁻ study [7] finds that the $t\overline{b}$ tb final state can be isolated with an efficiency of 2.2%. For $m_{H^{\pm}} = 200$ GeV and $\sqrt{s} = 500$ GeV, we have adopted the same 2.2% efficiency and negligible background. Figure 4 shows the resulting $t\overline{b}$ tb rates and 1σ bounds for MSSM scenarios (I) and (II). The corresponding bounds on $tan \beta$ are shown in Fig. 5 (right).

For the total width determination, we assume that we keep only 75% of the events after cuts (i.e. a fraction 0.75×0.022 of the raw event number), corresponding to throwing away wings of the mass peaks, and each $t\bar{b}$ to event is counted twice since we can look at both the H⁺ and the H⁻ decay. We define a resolved width which incorporates the detector resolution $\Gamma_{\rm res} = 5$ GeV:

$$\Gamma_{\rm H^{\pm}}^{\rm R} = \sqrt{[\Gamma_{\rm tot}^{\rm H^{\pm}}]^2 + [\Gamma_{\rm res}]^2}.$$
 (2)

Estimated errors are based on the width measurement for 10% systematic error in $\Gamma_{\rm res} = 0.5$ GeV. The resolved width $\Gamma_{\rm H^{\pm}}^{\rm R}$ for scenario (I) is given in Fig. 5 and it is very similar for scenario (II). It also shows resulting $\tan \beta$ bounds. In comparison to the neutral Higgs boson methods (Fig. 3), we observe that for MSSM scenario (I) the $t\overline{b}$ to rate measurement gives a $\tan \beta$ determination that is quite competitive with that from HA production in

Parallel Sessions

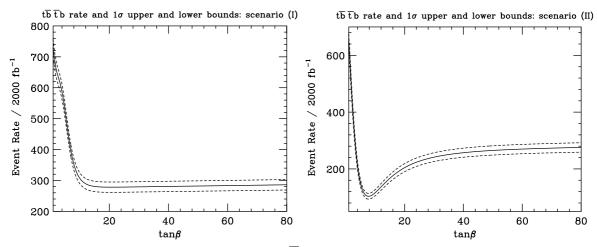


Figure 4: Expected $e^+e^- \to H^+H^- \to t\overline{b}\,\overline{t}b$ event rates for 2.2% efficiency and $\pm 1\sigma$ bounds in scenarios (I) and (II) in the MSSM for $m_A = 200$ GeV, $\sqrt{s} = 500$ GeV and $\mathcal{L} = 2000$ fb⁻¹.

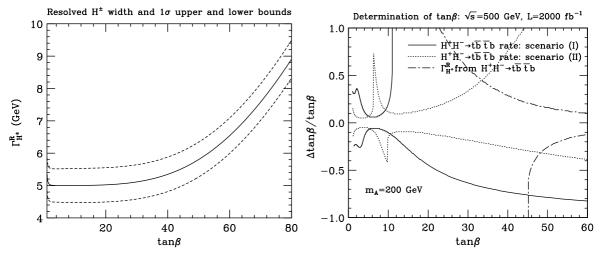


Figure 5: Left: Expected resolved width $\Gamma_{\rm H^{\pm}}^{\rm R}$, Eq. (2), for scenario (I) and 1σ upper and lower bounds with 2.2% selection efficiency. The statistical bounds include an additional efficiency factor of 0.75 for keeping only events in the central mass peak and assume $\Gamma_{\rm res} = 5$ GeV with a 10% uncertainty. Right: Expected precision on $\tan \beta$ (1 σ bounds) for $m_{\rm H^{\pm}} \approx m_{\rm A} = 200$ GeV, $\sqrt{s} = 500$ GeV and $\mathcal{L} = 2000$ fb⁻¹ based on the e⁺e⁻ \rightarrow H⁺H⁻ \rightarrow t $\bar{\rm b}$ $\bar{\rm t}$ b rate and $\Gamma_{\rm H^{\pm}}^{\rm R}$.

the $b\overline{b}b\overline{b}$ final state. For MSSM scenario (II), the $t\overline{b}\,\overline{t}b$ rate gives an even better $\tan\beta$ determination than does the $b\overline{b}b\overline{b}$ rate. On the other hand, the width measurement from the $t\overline{b}\,\overline{t}b$ final state of H⁺H⁻ production is much poorer than that from the $b\overline{b}b\overline{b}$ final state of HA production.

By combining the $\tan \beta$ errors from all processes in quadrature we obtain the expected net errors on $\tan \beta$ shown in Fig. 6 for MSSM scenarios (I) and (II). The Higgs sector will provide an excellent determination of $\tan \beta$ at small and large $\tan \beta$ values. However, larger bounds are expected for moderate $\tan \beta$ in scenario (II) where SUSY decays of the A, H, H $^{\pm}$ are not significant. Further information on $\tan \beta$ could be obtained from the reaction $e^+e^- \to t\bar{t} \to tbH^{\pm} \to tb\tau\nu$, further Higgs decay branching ratios (e.g. H \to WW, ZZ, hh; A \to Zh; H, A \to SUSY particles), the H/A decay width from $b\bar{b}H/A$ production, and the polarization of scalar taus.

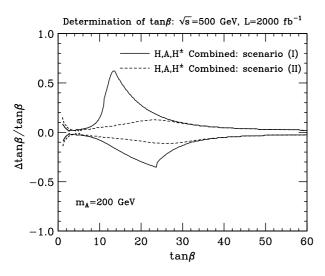


Figure 6: Expected combined precision on $\tan \beta$ (1σ bounds) for $m_{\rm H^{\pm}} \approx m_{\rm A} = 200$ GeV, $\sqrt{s} = 500$ GeV and $\mathcal{L} = 2000$ fb⁻¹ based on combining (in quadrature) the results shown in Figs. 3 and 5 for the bbH/A rate, the HA \rightarrow bbbb rate, $\Gamma^{\rm R}_{\rm H,A}$, the tb tb rate and $\Gamma^{\rm R}_{\rm H^{\pm}}$. Higher order calculations in the MSSM could influence the combination of the different $\tan \beta$ methods.

Conclusions

A high-luminosity linear e^+e^- collider will provide a precise measurement of the value of $\tan \beta$ throughout most of the large possible $\tan \beta$ range $1 < \tan \beta < 60$. In particular, we have demonstrated the complementarity of employing: a) the $b\bar{b}A + b\bar{b}H \to b\bar{b}b\bar{b}$ rate; b) the $HA \to b\bar{b}b\bar{b}$ rate; c) the average H, A total width from HA production; d) the $H^+H^- \to t\bar{b}t\bar{b}$ rate; and e) the H^\pm total width from $H^+H^- \to t\bar{b}t\bar{b}$ production. Experimental challenges will be the required high total luminosity, an excellent b-tagging performance, and precision detector resolution and selection efficiency determinations.

References

- [1] M. Berggren, R. Keranen, A. Sopczak, EPJdirect C 8 (2000) 1.
- [2] J. Gunion, T. Han, J. Jiang, S. Mrenna, A. Sopczak, Proc. Summer Study on the Future of Particle Physics (Snowmass 2001), hep-ph/0112334.
- [3] V. Barger, T. Han, J. Jiang, Phys. Rev. **D63**, 075002 (2001).
- [4] A. Djouadi, J. Kalinowski, M. Spira, Comp. Phys. Comm. 108, 56 (1998).
- [5] A. Andreazza, C. Troncon, DESY-123E (1997) p. 417, Fig. 7.
- [6] A. Sopczak, Z. Phys. C 65 (1995) 449.
- [7] M. Battaglia, A. Ferrari, A. Kiiskinen, T. Maki, Proc. Summer Study on the Future of Particle Physics (Snowmass 2001), hep-ph/0112015.