Heavy MSSM Higgses at the LHC

P.Vanlaer, IIHE Brussels (CMS), for the Atlas and CMS collaborations

SUSY02, Hamburg, June 17 - 23, 2002

Outline

- LHC, Atlas and CMS
- A, H
- H^+
- Conclusions
LHC schedule

- **April 2007**: first collisions
- **August 2007 - February 2008**:
 \[L = 5 \times 10^{32} \rightarrow 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1} \]
 \[L_t = 10 \text{ fb}^{-1} \]
- **2008**
 \[L = 10^{34} \text{ cm}^{-2}\text{s}^{-1} \]
 \[L_t = 100 \text{ fb}^{-1} / \text{year} \]

Atlas and CMS

- construction well under way
- **design parameters:**
 - \(e, \mu, \gamma \): \(\sigma_{E/E} \sim 1\% @ 100 \text{ GeV} \)
 - calorimeter coverage |\(\eta \)\| \(\leq 5 \)
 - tracking coverage |\(\eta \)\| \(\leq 2.5 \)

\[\eta = -\ln \tan(\theta/2) \]

- **event rate:**
 - \~100 kHz from L1 trigger
 - \~100 Hz stored for offline analysis
Heavy neutral Higgses A, H

Production cross-sections

High tanβ:
- Hbb, Hτ⁺τ⁻, Hμ⁺μ⁻ enhanced
- gg→bbH/A dominating

Monte-Carlo’s:
- A/H: HIGLU, HQQ (full lines) / Pythia6.1 (dashed)
- SUSY loop corrections: from partial decay widths from HDECAY

No stop mixing, M_{SUSY} = 1 TeV
Important decay modes: \(A/H \rightarrow \tau^+\tau^- \), \(\mu^+\mu^- \), \(bb \), \(\chi\chi \)

\[\sigma(A+H)\times\text{BR}(\tau^+\tau^-) \]

\[\sigma(bbA+bbH)\times\text{BR}(\tau^+\tau^-) \]

\(m_A \geq 150 \text{ GeV}: \ A, H \) unresolved

3 final states: \(l+l+\nu's \): BR ~ 12 %, \(l+\tau\text{-jet}+\nu's \): BR ~ 35 % (see R.Kinnunen)

\(2\tau\text{-jets}+2\nu \): BR ~ 25 % (1+1 prong), ~ 44 % (1+3 prong)

Use of b-tagging to improve significance

large background, studies going on
Main backgrounds:

- QCD jets:
 - rate overwhelming
 - L1 trigger jet (di-jet) thresholds: $E_T \geq 120 \ (90) \ \text{GeV} \ (\text{CMS})$
 - efficiency for light A, H too low
 - need dedicated τ-jet trigger
- W+jets with $W \rightarrow \tau\nu$, jet faking τ
- $Z/\gamma^* \rightarrow \tau\tau, \ tt$ with $W \rightarrow \tau\nu$

Atlas τ-trigger

- L1+L2 CALO τ-jet
 - narrow + narrower EM deposit in $\Delta\eta \times \Delta\phi = 0.4 \times 0.4$
 - calo trigger tower
- L2 tracking
 - $1 \leq N_{tk} \leq 3$ in cone

CMS τ-trigger

- L1 CALO τ-jet
 - narrow + isolated
 - L1 τ-jet: $E_T \geq 100 \ (67) \ \text{GeV}$; $\varepsilon = 76\%$ for $m_A = 200 \ \text{GeV}$
- L2 ECAL isolation
- Tracking (pixel detector)
 - $1 \leq N_{tk} \leq 3$ in narrow cone

NB: $H^+ \rightarrow \tau\nu$: trigger requires full tracking
A, H $\rightarrow \tau^+\tau^- \rightarrow 2 \tau$-jets + 2$\nu$ (cont.)

Analysis
- τ-jet identification \gg fake τ-jets from QCD, W+jets...
 - $E_T^{\text{jet}} > 60$ GeV
 - Hard track with $p_T > 40$ GeV/c within $\Delta R = 0.1$ from CALO jet axis
 - **Isolation**: no track with $p_T > 1$ GeV/c within $0.03 < \Delta R < 0.4$ from hard track

Diagram
- **QCD jets**
 - 1 prong selection
 - 1/3 prong selection

Graph
- $\varepsilon(m_A = 500\text{GeV}) = 34\%$
- $\varepsilon(m_A = 500\text{GeV}) = 17\%$

Note
- ε QDC jets **CMS**
 - $\leq 50\%$ uncertainty from jet fragmentation

P. Vanlaer, IJHE Brussels
Analysis (cont.)

- \(\tau \)-tagging \(\sim \) QCD, Z\(\rightarrow \)ll, tt...
 - impact parameter, secondary vertex
- central non-\(\tau \) jet veto \(\sim \) tt
- \(E_t^{\text{miss}} > 40 \text{ GeV} \) (60 GeV for \(m_A = 500 \text{ GeV} \))
- b-tagging \(\sim \) Z/\(\gamma^* \), QCD
 - soft b-jets, flat \(\eta \) distribution
 - CMS: \(\varepsilon_b = 35\% \) with 1\% mistag per Z/\(\gamma^* \)-event

- Mass reconstruction
 - assume \(\nu_i \) collinear to visible \(\tau_i \)
 - project \(E_t^{\text{miss}} \)
 - \(\sigma(m) \sim \sigma(E_t^{\text{miss}}/\sin(\phi_{\tau\tau})) \) while \(\tau \)'s tend to be back-to-back

\(\text{Atlas, } \phi_{\tau\tau} < 165^\circ \)

fast simulation
5σ discovery reach for $A, H \rightarrow \tau^+\tau^-$

$M_2 = 200 \text{ GeV, } \mu = -200 \text{ GeV, } M_g = 800 \text{ GeV, }$
$M_{q,\tau} = 1 \text{ TeV, } A_t = 2.4 \text{ TeV}$

Sensitivity to MSSM parameters:

- $\sigma*\text{BR}$ insensitive to stop mixing
- SUSY loops only affect $gg\rightarrow H$
- light SUSY spectrum $\Rightarrow \text{BR}(H/A\rightarrow\tau\tau)$ can be reduced at high masses
- large $\mu \Rightarrow \text{BR}(H/A\rightarrow\tau\tau)$ can be enhanced at high masses
A, H → χχ

Decay into sparticles
- MSSM, RG relation $M_2 = 2M_1$
- large $|\mu| > M_2$ (favoured if χ^0_1 dark matter)
 - $m(\chi^0_1) \approx M_1; m(\chi^0_2) \approx M_2$
- sleptons light
- $A, H \rightarrow \chi^0_2 \chi^0_2 \rightarrow 4l^\pm + X$

Analysis
- SM backgrounds: ZZ, ZW, Zbb, Zcc, Wtb, tt
- MSSM backgrounds: $q/\bar{q}, l\bar{l}, \nu\bar{\nu}, q\chi, \chi\chi$
 - 2 pairs of isolated leptons
 - jet veto, Z veto
Signal and total background
\(m_A = 350 \text{ GeV}, \tan \beta = 5, M_2 = 120 \text{ GeV}, \mu = -500 \text{ GeV}, M_1 = 250 \text{ GeV}, M_{\tilde{q}, \tilde{g}} = 1 \text{ TeV} \)

\[A, H \rightarrow \chi^0_2 \chi^0_2 \rightarrow 4l^+ - \chi^0_1 \chi^0_1 \]

Sensitivity to MSSM parameters:
- sensitive to \(M_1, M_2, \mu, m_{\tilde{t}} \)
- small \(M_1, M_2, m_{\tilde{t}} \); large \(\mu \) favourable

5\(\sigma \) discovery contours
\(\mu = -500 \text{ GeV}, M_1 = 250 \text{ GeV}, M_{\tilde{q}, \tilde{g}} = 1 \text{ TeV} \)

Maximal stop mixing

100 fb\(^{-1} \)
Charged Higgs H^+

Production
- $gg \rightarrow tbH^+, \ gb \rightarrow tH^+, \ qq' \rightarrow H^+$
- smaller rate from $pp \rightarrow H^+H^-+X, \ \rightarrow H^+W$
(see next talks)
- $1\text{pb} @ m_{H^+} = 400 \ \text{GeV}$

Most promising decay channels
- $\tau\nu$
 - $\text{BR}=10\%$ at high $\tan\beta$
 - harder $p_{\pi}/E_{\tau-jet}$ in $H^+ \rightarrow \tau\nu$ than in tt bkg with $W \rightarrow \tau\nu$ (simulation with TAUOLA)
 - m_τ reconstruction
- tb
 - discovery could be possible for small (<3) and large $\tan\beta$ (>20)
H+ in cascade decays looks promising

\[m(H^+) > m(t) \]

\[tH^+, H^+ \rightarrow tb \]

**Intermediate tan\(\beta \)?

- \(H^+ \) in cascade decays looks promising

**CMS, 30 fb\(^{-1} \)

ATLAS, 300 fb\(^{-1} \)

Same shape as signal

Good control of bkg mandatory
Conclusions

- The discovery range for heavy MSSM Higgses at the LHC is studied in a large fraction of the parameter space (not all channels shown)
- The intermediate $\tan\beta$ region remains difficult
 - complementarity from decays into SUSY particles, new ideas welcome
- Work is ongoing on techniques to measure Higgs parameters at the LHC (masses, widths, $\tan\beta$, couplings)

Many thanks to: K.Assamagan, D.Cavalli, F.Gianotti, R.Kinnunen, S.Lehti, F.Moortgat, A.Nikitenko, E.Richter-Was, J.Thomas, for the material shown and help in preparing this talk