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Abstract:
Supersymmetry predicts that gauge couplings are equal to the corresponding gaugino-
sfermion-fermion Yukawa couplings. This prediction can be tested for the QCD sector
of the MSSM by studying the processese+e− → squark+antisquark+gluon ande+e− →
squark+antiquark+gluino at a future linear collider. We present results for these processes at
next-to-leading order inαs in the framework of the MSSM. We find sizable SUSY-QCD correc-
tions. The renormalization scale dependence is significantly reduced at next-to-leading order.
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1 Introduction

Softly broken supersymmetry predicts that each known particle has a superpartner with equal
gauge quantum numbers and spin different by 1/2. Further, the gauge couplings have to be
equal to the corresponding gaugino-sfermion-fermion Yukawa couplings. These coupling re-
lations are vital for the cancellation of quadratic divergencies. Therefore, in order to establish
supersymmetry experimentally, one not only has to find new particles and measure their quan-
tum numbers, but also to verify the SUSY coupling relations. For the QCD sector of the MSSM,
the coupling relation is depicted in Fig. 1. Analogous relations hold for the electroweak sector
[1].

The SU(3) coupling relation can be verified ate+e− colliders by measuring the cross sections
for the processes

e+e− → qq̄g (a),
e+e− → q̃ ¯̃qg (b), (1)

e+e− → q ¯̃qg̃, q̄q̃g̃ (c),

and compare them to precise theoretical predictions, i.e. to a calculation at next-to-leading order
(NLO) in αs. The standard NLO QCD corrections to the 3-jet production process (2a) are well
known [2]. Here we will also present the virtual SUSY-QCD corrections to orderα2

s for this
process. Cross sections for processes (2b) and (2c) have been computed to leading order in [3].
We have recently performed a full NLO calculation for these processes. In this talk, we will
discuss our main results. A detailed account of our work will be given elsewhere [4].

2 Squark and gluino production at leading order

We first discuss the leading order cross sections for processes (2b) and (2c). We allow only
light quarksq = u,d,s,c,b (and antiquarks) in the final state of process (2c) and neglect their
masses. We further exclude scalar top quarks as final state particles. The mixing between the
chiral components ˜qL andq̃R is neglected and all five squark flavours are assumed to be mass
degenerate. The cross section for (2b) diverges as the gluon energy goes to zero. We define an

g
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¯̃q q̃
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¯̃q q

Gauge couplinggs = Yukawa coupling ˆgs

Figure 1: Coupling relation for the QCD sector of the MSSM.
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infrared finite cross section as follows:

σ(Ecut) ≡ ∑
q=u,d,s,c,b

∑
h=L,R

σ(e+e− → q̃h ¯̃qhX ; EX > Ecut), (2)

whereX = g at leading order. The minimal energyEcut can be chosen by the experimentalist.
We will takeEcut = 50 GeV for most of the numerical results below. For process (2c), the total
cross section is defined by

σtot ≡ ∑
q=u,d,s,c,b

∑
h=L,R

{
σ(e+e− → q̃hq̄g̃)+σ(e+e− → q ¯̃qhg̃)

}
. (3)

Figs. 2a and 2b show the leading order cross sectionsσ(Ecut) andσtot defined above. We also
plot for comparison the LO cross section fore+e− → q̃ ¯̃q. We distinguish between the cases
mq̃ < mg̃ (Fig. 2a) andmq̃ > mg̃ (Fig. 2b). One sees that even for rather large squark and gluino
masses, the cross sectionσ(Ecut) defined in (2) reaches values of several tens of femtobarn,
while the cross sectionσtot defined in (3) is about one order of magnitude smaller.
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Figure 2: Leading order cross sections for squark and gluino production in e+e− collisions for
mg̃ > mq̃ (a) and mg̃ > mq̃ (b).

3 SUSY-QCD corrections to e+e−→ q̃ ¯̃qg and e+e−→ q ¯̃qg̃/q̄q̃g̃

The calculation of the NLO SUSY-QCD corrections to processes (2b) and (2c) requires the eval-
uation of both virtual and real corrections. Possible real corrections at order α2

s to process (2b)
are contributions from the processes e+e− → q̃ ¯̃qgg and e+e− → q̃ ¯̃qqq̄, while the real corrections
to process (2c) consist of real gluon emission, e+e− → q ¯̃qg̃g . Sample Feynman diagrams for
both virtual and real corrections are shown in Figs. 3a-3d.
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Figure 3: Sample Feynman diagrams for virtual and real corrections to e+e− → q̃ ¯̃qg (Figs. (a)
and (b)), and to e+e− → q ¯̃qg̃ (Figs. (c) and (d)). The trivial leptonic part is not shown.

In the calculation of the virtual corrections one encounters both ultraviolet and soft and collinear
divergencies. For convenience, we regularize them by using conventional dimensional regu-
larization (DREG). As is well known, DREG violates supersymmetry. In particular, SUSY-
invariant physical quantities involving the gauge and Yukawa couplings gs and ĝs deviate by
a finite amount in the exact SUSY limit. A SUSY-restoring counterterm can be derived from
the Slavnov-Taylor identities [5]. This amounts to the following replacement of the Yukawa
coupling ĝs in the gluino-quark-squark vertex [6]:

ĝs = gs

[
1+

αs

3π

]
. (4)

The ultraviolet divergencies are removed by renormalization of the masses and the coupling. For
the mass renormalization we use the on-shell scheme, while the strong coupling is renormalized
in the MS scheme. After renormalization the virtual corrections still contain soft and collinear
singularities which manifest themselves in double and single poles in ε = (d − 4)/2. They
are cancelled by singular contributions from the four parton final states which are due to soft
gluons and collinear massless partons. These contributions have to be computed analytically
in d dimensions to perform the cancellation. For process (2b) we used the so-called dipole
subtraction method [7], which has been recently generalized to include massive partons [8].
For process (2c) we used a variant of the phase space slicing method [9].

We now discuss our numerical results for the SUSY-QCD corrections, first for the process
e+e− → q̃ ¯̃qg. Fig. 4 shows the cross section σ(Ecut) defined in Eq. (2), where at NLO the
unspecified part of the final state X can be a single gluon, two gluons or a massless qq̄ pair.
In all cases we require EX > Ecut and take in Fig. 4 Ecut = 50 GeV. For the masses we choose
mg̃ = 400 GeV and mq̃ = 300 GeV. The renormalization scale is set to µ = 1 TeV. Fig. 4 shows
that the SUSY-QCD corrections enhance the cross section in the peak region by about 20%.

In Fig. 5a we show the dependence of σ(Ecut) on the renormalization scale µ for fixed
√

s =
2 TeV and two different values for Ecut. The µ-dependence is significantly reduced by the
inclusion of the order α2

s corrections, thus leading to a more reliable theoretical prediction of
the cross section. Fig. 5b shows the dependence of σ(Ecut) on the cut parameter. We emphasize
again that Ecut is a physical parameter that can be chosen by the experimentalist.

The inclusive cross section at LO and NLO for e+e− → q ¯̃qg̃/q̄q̃g̃ defined in (3) is shown in
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Figure 4: Cross section for e+e− → q̃ ¯̃qX at leading order (dashed line) and including the SUSY-
QCD corrections (full line) for mg̃ = 400 GeV, mq̃ = 300 GeV, Ecut = 50 GeV and µ = 1 TeV.
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Figure 5: In (a), the dependence of σ(Ecut) on the renormalization scale is shown, where the
reference scale is µ0 = 1 TeV. In (b), the dependence on Ecut is depicted for µ = 1 TeV. The c.m.
energy was fixed to be

√
s = 2 TeV, and masses were chosen as in Fig. 4.

Fig. 6a and 6b for the cases mq̃ < mg̃ and mq̃ > mg̃, respectively. The cross section σtot reaches
values up to 5 fb for the case mq̃ = 300 GeV and mg̃ = 400 GeV. The SUSY-QCD corrections
enhance the cross section in the peak region by about 25%. For mq̃ > mg̃, the cross section is
below 1 fb, and this case is probably of no phenomenological interest. The NLO corrections
reach values up to 80%1. The scale dependence of σtot is shown in Figs. 7a and 7b. For the
phenomenologically more interesting case mq̃ < mg̃ the inclusion of the SUSY-QCD corrections

1For mq̃ > mg̃ the process e+e− → q ¯̃qg̃/q̄q̃g̃ is only relevant for c.m. energies between m q̃ +mg̃ and 2mq̃, since
for

√
s > 2mq̃ on-shell production of a squark-antisquark pair becomes possible.
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Figure 6: Total cross section for gluino production in LO and NLO for mq̃ < mg̃ (a) and mq̃ > mg̃

(b).
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Figure 7: Scale dependence of σtot in LO and NLO for the cases mq̃ < mg̃ (a) and mq̃ > mg̃ (b).
The reference scale is µ0 = mq̃ +mg̃ in both cases.

significantly reduces the theoretical uncertainty due to the arbitrariness of the scale choice.

4 SUSY-QCD corrections to e+e− → qq̄g

Finally we study the impact of SUSY-QCD corrections on the production of 3 jets. For this we
have to compute the SUSY-QCD loop corrections to the process e+e− → qq̄g. The 3-jet cross
section is defined as follows:

σ3(ycut) = σ(e+e− → 3 jets;yi j > ycut), (5)
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Figure 8: Impact of virtual SUSY-QCD corrections on the 3-jet cross section. We require
(pi + p j)2 > (50 GeV)2 for each pair (i, j) of the final state partons.

where we take yi j = (pi + p j)2/s with pi denoting the four momenta of the final state partons.
The cross section may be expanded as follows:

σ3(ycut) =
αs

2π
σ0

3 +
(αs

2π

)2 [
σ1,SUSY

3 +σ1,QCD
3

]
+O

(
α3

s

)
. (6)

Here σ1,QCD
3 denotes the ordinary QCD correction at order α2

s . The ‘genuine’ SUSY-QCD
corrections are defined by

∆SUSY ≡ αs

2π
σ1,SUSY

3

σ0
3

. (7)

The dependence of ∆SUSY on ycut turns out to be very small. We choose ycut = (50 GeV)2/s and
plot in Fig. 8 ∆SUSY as a function of

√
s for mq̃ = 300 GeV and mg̃ = 400 GeV. Here we have

used a decoupling scheme for the strong coupling, i.e. only the light quark flavours contribute to
the running of αs. This ensures that ∆SUSY → 0 as the squark and gluino masses become large
compared to the c.m. energy. Fig. 8 shows that the virtual SUSY-QCD corrections are tiny at
the Z-pole, reach a maximum of about 1.5% around

√
s = 1 TeV and eventually turn negative

for large c.m. energies.

5 Conclusions

The experimental verification of supersymmetric coupling relations is necessary to establish
supersymmetry. The SU(3) coupling relation can be tested in e+e− collisions by comparing
measurements of the processes e+e− → qq̄g, q̃ ¯̃qg, q ¯̃qg̃/q̄q̃g̃ to precise, i.e. NLO calculations.
We have computed the previously unknown order α2

s SUSY-QCD corrections to the above pro-
cesses. The corrections enhance the LO cross sections for e+e− → q̃ ¯̃qg, q ¯̃qg̃/q̄q̃g̃ by about 20%
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or more in the peak region. The renormalization scale dependence is reduced for the cases of
phenomenological interest.
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