Search for R-parity violation at LEP

Silvia Costantini University of Rome "La Sapienza" and INFN Rome L3 Collaboration

- R-parity
- Pair-production of gauginos, sleptons and squarks
 - topologies and selections
 - results and limits
- Sneutrino single production
- Spontaneous R-parity breaking
- Conclusions

R-parity: multiplicative discrete symmetry in SUSY:

 $\mathbf{R}_{\mathbf{P}} = (-1)^{2S+3B+L}$

R_n

 $\mathbf{R}_{\mathbf{P}} = \mathbf{1}$ for standard particles $\mathbf{R}_{\mathbf{P}} = -\mathbf{1}$ for supersymmetric particles

The most general MSSM superpotential has also L- and B-violating terms:

 $\mathbf{W}_{\mathbf{R}} = \lambda_{ijk} \mathbf{L}_{i} \mathbf{L}_{j} \overline{\mathbf{E}}_{k} + \lambda_{ijk}' \mathbf{L}_{i} \mathbf{Q}_{j} \overline{\mathbf{D}}_{k} + \lambda_{ijk}'' \overline{\mathbf{U}}_{i} \overline{\mathbf{D}}_{j} \overline{\mathbf{D}}_{k} + \varepsilon_{i} \mathbf{L}_{i} \mathbf{H}_{2}$

48 new coupling constants (9 + 27 + 9 + 3) i, j, k: generation indices

R-parity violated:

- single production of SUSY particles is allowed (ex. $e^+e^- \rightarrow \tilde{\nu}$)
- LSP decays
- LSP can be any particle: $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}, \tilde{\ell}_R, ...$

Direct and indirect decays:

RPV not excluded by experimental data:

$\lambda_{133} < 0.003$	V_e mass	$\tilde{\mathbf{m}} = 100 \; \mathbf{GeV}$
$\lambda'_{111} < 0.00035$	$(\beta\beta)_{0\nu}$	$\tilde{\mathbf{m}} = 100 \; \mathbf{GeV}$
$\lambda_{13k} < 0.06$	$\mathbf{R}_{ au}$	$\tilde{\mathbf{m}} = 100 \; \mathbf{GeV}$

 $\lambda'_{11k}\lambda''_{11k} < 10^{-22}$ and $\lambda'_{ijk}\lambda''_{lmn} < 10^{-10}$ (a to avoid a fast proton decay $p \rightarrow \pi^0 e^+$

 $(at \tilde{m} = 100 \text{ GeV})$

Less stringent limits on other couplings

Assumptions:

• Only one λ (λ' , λ'') \neq 0

• LSP decay length below 1 cm:

- $-\lambda \ (\lambda', \lambda'') > 10^{-5}$ for gauginos
- $-\lambda (\lambda', \lambda'') > 10^{-7}$ for sfermions

$\mathbf{M}_{\tilde{\chi}_1^0} \geq 10 \text{ GeV}$ required for prompt decays

Results based on:

Year	\sqrt{s} (GeV)	\mathcal{L} (pb ⁻¹) / Exp.
1996	161–172	20
1997	183	55
1998	189	180
1999	192–202	230
2000	200–208	220

Above 2.5 fb⁻¹ in total

Global sensitivity to cross sections of 0.01-0.03 pb (with $\varepsilon \sim 30\% - 40\%$)

ALEPH Coll., paper in preparation DELPHI Coll., paper in preparation L3 Coll., Phys. Lett. B 524 (2002) 65-80 OPAL Coll., paper in preparation

ADLO combined results for λ **scalar leptons LEPSUSYWG/02-10.1**

Cross section values at $\sqrt{s} = 206 \text{ GeV}$

Signal events

Process	σ (pb) for tan β = 1	l
$ ilde{\chi}_{1}^{0} ilde{\chi}_{1}^{0}$	1	$m_0 = 50 \text{ GeV}$
$(\mathbf{M}_{\widetilde{\chi}_1^0} = 40 \; \mathbf{GeV})$	0.02	$\mathbf{m_0} = 500 \; \mathbf{GeV}$
$ ilde{\chi}_1^+ ilde{\chi}_1^-$	0.15	$m_0 = 50 \text{ GeV}$
$(\mathbf{M}_{\tilde{\chi}_1^{\pm}} = \mathbf{103 \ GeV})$	0.25	$\mathbf{m_0} = 500 \; \mathbf{GeV}$
$ ilde{\mu}_{R}^{+} ilde{\mu}_{R}^{-}$	0.1	$m_0 = 50 \text{ GeV}$
$(M_{\tilde{\mu}_R} = 95 \text{ GeV})$		

Background events, Standard Model cross sections

Process	σ
e ⁺ e ⁻ ff	20 nb
qq	80 pb
$\mathbf{W}^{+}\mathbf{W}^{-}$	20 pb
$\mu^+\mu^-, au^+ au^-$	7 pb
Wev	3 pb
ZZ	1 pb

Coupling	Topologies	Eff. (%)
λ	2ℓ+ <i>Þ</i> ∕	10-40
	4 ℓ	30-50
	4 ℓ+ <i>Þ</i> ∕	20-50
	leptons + jets	20-70
λ'	4 jets	15-65
	4 jets + <i>E</i> /	20-60
	jets + leptons	15-75
	jets + leptons+ 🗗	30-50
λ″	multijets + 🗗	30-50
	multijets + leptons	15-55
	multijets (up to 10 q)	25-50

Compatible with $e^+e^- \rightarrow ZZ \rightarrow e^+e^- \tau^+ \tau^-$

Data

Agreement between selected data and expected background

Data and Background Events ADLO

No significant excess of data events

- \rightarrow cross section upper limits
- \rightarrow lower limits on masses

All limits at 95% C.L., set with the full data sample Limits derived for the coupling with the lowest sensitivity: final states with taus, no b-tagging L3, 95% C.L. upper limits on pair-production cross sections, indirect decays

Coupling	Process	σ limit (pb)
λ	$ ilde{\chi}^{0}_{1} ilde{\chi}^{0}_{1}$	0.02 -0.07
	$ ilde{\chi}_1^+ ilde{\chi}_1^-$	0.08 -0.15
λ"	$ ilde{\chi}_1^0 ilde{\chi}_1^0$	0.11 -0.18
	$ ilde{\chi}_1^+ ilde{\chi}_1^-$	0.14 -0.16

Take into account more processes at the same MSSM point

Mass (GeV)	λ _{ijk}	λ'_{ijk}	$\lambda_{ijk}^{\prime\prime}$	Exp.
$\mathbf{M}_{\widetilde{\chi}_1^0}$	(34)-40		38-40	ADL
$\mathbf{M}_{\widetilde{\chi}_2^0}$	84		80	L
$\mathbf{M}_{ ilde{\chi}_1^\pm}$	103	103	103	ADL

 $\widetilde{\chi}_{1}^{\pm}$ kinematic limit reached for every $\lambda, \, \lambda', \, \lambda''$

Mass limit evolution vs $tan\beta$

ADLO Cross-section upper limits with BR $(\tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0) = 1$ $\mu = -200$ GeV, $\tan\beta = 1.5$

 $\sigma \leq 0.02 \text{ pb} \quad \text{for } M_{\tilde{e}_R} (M_{\tilde{\mu}_R}, M_{\tilde{\tau}_R}) \leq 103 \text{ GeV}$

ADLO Cross-section upper limits with BR $(\tilde{\nu} \rightarrow \nu \tilde{\chi}_1^0) = 1$ $\mu = -200$ GeV, tan $\beta = 1.5$

 $\sigma \leq 0.05 \text{ pb}$ for $M_{\tilde{\nu}_e} (M_{\tilde{\nu}_{\mu,\tau}}) \leq 103 \text{ GeV}$ and $M_{\tilde{\chi}_1^0} \geq 40 \text{ GeV}$

Scan over m_0 and M_2 with $\mu = -200$ GeV and $\tan\beta = 1.5$

Mass Limit (GeV)	$M_{\tilde{u}_R}$	$M_{ ilde{\mathbf{u}}_L}$	$M_{\tilde{\mathbf{d}}_{\boldsymbol{R}}}$	$M_{ ilde{\mathbf{d}}_L}$	$M_{\tilde{t}_1}$	$M_{\tilde{b}_1}$
$\lambda_{ijk}^{\prime\prime}$ (direct)	80	87	56	86	77	55
$\lambda_{ijk}^{\prime\prime}$ (indirect)	79	87	55	86	72-77	48-72

Sensitivity to high \tilde{v} masses up to \sqrt{s} . Limits on $|\lambda|$

 Effects in fermion pair production: Additional contributions to σ and A_{fb} from λ_{ijk}L_iL_jE
 Fit SM + possible new physics effects No deviations found

More sensitivity with $v \tilde{\chi}_1^0$ than with SM fits

ALEPH, 189-208 GeV e $\gamma \rightarrow \tilde{\nu}_j \ell_k$ via λ_{1jk} or λ_{231}

Possible additional bilinear term $\varepsilon_i L_i H$ giving rise to: $\tilde{\chi}_1^{\pm} \rightarrow \tau^{\pm} J$ (J massless Majoron, invisible)

DELPHI, 183-208 GeV $\tan \beta \ge 2$

Two acoplanar taus + E72 events found, 72.3 \pm 2.5 expected from SM 95% C.L. upper limit on $\tilde{\chi}_1^{\pm}$ prod. cross section: 0.14 pb Mass limit: 103 GeV assuming BR ($\tilde{\chi}_1^{\pm} \rightarrow \tau^{\pm} \mathbf{J}$) = 1

Silvia Costantini

- RPV searches at LEP cover almost every SUSY process
- Same sensitivity as in standard searches: SUSY results do not depend on assumptions of R-parity conservation
- New limits with about 700 pb⁻¹ for experiment, at different \sqrt{s} values up to 208 GeV
- New lower mass limit on lightest neutralino: $M_{\tilde{\chi}_1^0} > 40$ GeV at 95% C.L., for every m₀ and tan β
- First LEP-wide combination for scalar leptons via λ couplings www.cern.ch/LEPSUSY/