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Abstract

At a future linear collider, the masses and couplings of scalar leptons can be mea-
sured with high accuracy, thus requiring precise theoretical predictions for the rel-
evant processes. In this work, after a discussion of the expected experimental pre-
cision, the complete one-loop corrections to smuon and selectron pair production
in the MSSM are presented and the effect of different contributions in the result is
analyzed.

1 Introduction

If supersymmetric particles are detected in the future, their properties can be studied with
high accuracy at a high-energy linear collider [1]. Accordingly, precise theoretical predic-
tions for the anticipated processes are important for the determination of the couplings
and the underlying supersymmetry-breaking parameters. In this report, the production
of scalar leptons near threshold and in the continuum is analyzed, focusing on the produc-
tion of scalar electrons (selectrons) ẽ and scalar muons (smuons) µ̃ in e+e− annihilation.
The possibility to produce selectrons in the e−e− mode is also discussed.

The status of theoretical predictions for the excitation curves near threshold, being
relevant for the measurement of the slepton masses, is shortly summarized. The measure-
ment of the cross-sections in the continuum, on the other hand, can be used to precisely
determine the couplings of the sleptons. For this purpose, the complete next-to-leading
order radiative corrections to the production of selectrons and smuons in the framework of
the Minimal Supersymmetric Standard Model (MSSM) are presented. Numerical results
are given for the O(α) corrections to the processes e+e− → µ̃+

Rµ̃−
R and e±e− → ẽ±R ẽ−R.

2 Precision measurements near threshold

At a linear collider with high luminosity, the masses of sleptons can be determined with
high accuracy by measuring the shape of the production cross-section near threshold.
Previous analyses have shown that the expected experimental precision for the mass mea-
surement is of the order O(100 MeV) [1]. It is therefore necessary to incorporate effects
beyond leading order in the theoretical predictions in order to match the experimental
accuracy. Near threshold, important corrections to the cross-sections arise from the non-
zero slepton width and the Coulomb corrections [2]. The slepton width Γl̃ is expected
to be small compared to the slepton mass ml̃. It can be incorporated by introducing a
complex mass for the intermediate off-shell sleptons, m2

l̃
→ m2

l̃
− iml̃Γl̃. The Coulomb

rescattering correction is one of the most important radiative corrections near threshold
arising from photon exchange between the slowly moving sleptons. For the production of
off-shell sleptons with orbital angular momentum l its leading contribution is given by
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Table 1: Expected precision for the determination of selectron and smuon masses and
widths from measuring the threshold cross-sections at five equidistant points. The values
are for the SPS1 scenario [3].

Process Integr. Lumin. [fb−1] Mass [GeV] Width [MeV]

e+e−→ (ẽ+
R ẽ−R)→ e+e− + �E 5×10 mẽR = 143.0+0.21

−0.19 Γ̃eR = 150+300
−250

e−e−→ (ẽ−R ẽ−R)→ e−e− + �E 5×1 mẽR = 142.95+0.048
−0.053 Γ̃eR = 200+50

−40

e+e−→ (ẽ±R ẽ±L )→ e+e−ττ + �E 5×10 mẽL = 202.2+0.37
−0.33 Γ̃eL = 240+40

−40

e−e−→ (ẽ−L ẽ−L )→ e−e−4τ + �E 5×1 mẽL = 202.2+0.62
−0.44 Γ̃eL = 240+500

−400

e+e−→ (µ̃+
Rµ̃−

R)→ µ+µ− + �E 5×10 mµ̃R = 143.0+0.42
−0.38 Γµ̃R = 350+400

−400

σcoul = σborn
απ

2βp
Q2

f̃

[
1− 2

π
arctan

|βM |2 − β2
p

2βp �m βM

]
�e

[
β2

p + β2
M

2β2
p

]l

(1)

with βp =
1

s

√
(s− p2

+ − p2−)2 − 4p2
+p2−, and βM =

1

s

√
(s−M2

+ −M2−)2 − 4M2
+M2−. Here

Qf̃ , p± and M2
± = m2

± − i m±Γ± are the charge, the momenta and complex pole masses
of the slepton and anti-slepton.

The slepton signal is characterized by their decays into neutralinos and charginos. Here
the decay channels l̃−R → l−χ̃0

1 and l̃−L → l−χ̃0
2 → l−ττχ̃0

1 have been considered, with the
lightest neutralino χ̃0

1 escaping undetected. Important backgrounds arise both from both
Standard Model and supersymmetric sources. After applying appropriate cuts to reduce
the background, the slepton masses and widths can be extracted in a model-independent
way from the measurement of the threshold cross-section. In Tab. 1 results are given
from a fit to cross-section measurements at five equidistant center-of-mass energies near
threshold. The cross-sections have been simulated including the aforementioned theo-
retical corrections as well as initial-state radiation in the leading-log approximation and
beamstrahlung effects. The findings of this study are consistent with the numbers quoted
in [4], which have been obtained without taking into account background contributions
and partly with higher integrated luminosity.

3 Analysis of slepton couplings

In contrast to the masses of the superpartners, their couplings are not directly modified by
soft-breaking terms. As a consequence, supersymmetry relates the Standard Model gauge
coupling between a vector boson V and a fermion f , g(V ff) to the gauge coupling between
the vector boson V and the scalar fermion f̃ , ḡ(V f̃ f̃), as well as to the Yukawa coupling
between the gaugino partner Ṽ of the vector boson, the fermion f and the sfermion f̃ ,
ĝ(Ṽ f f̃). Within softly broken supersymmetric theories all three kinds of (bare) couplings
are required to be identical, g = ḡ = ĝ. The gauge and Yukawa couplings of scalar
fermions can be precisely determined by measuring their production cross-sections at
a linear collider. For the case of the SU(3) QCD sector in the MSSM this has been
investigated in Ref. [5]. In the electroweak sector, which comprises the hypercharge U(1)Y

coupling g1 and the SU(2)L coupling g2, the coupling relation can be accurately tested
by measuring the pair-production cross-sections of scalar leptons. The pair production
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↙•
Figure 1: Slepton gauge and Yukawa couplings in tree-level contributions to smuon (a)
and selectron (b) pair production. ḡ1 and ḡ2 denote the slepton U(1)Y and SU(2)L gauge
coupling, while ĝ1 and ĝ2 indicate the corresponding Yukawa couplings.

for smuons, which proceeds via s-channel photon and Z-boson exchange, is particularly
suited for the extraction of the slepton gauge couplings ḡ1,2, see Fig. 1 (a). On the other
hand, the Yukawa couplings ĝ1,2 can best be probed in the production of selectrons, as a
result of the t-channel neutralino exchange, see Fig. 1 (b). As mentioned above, selectron
production can also be studied in e−e− collisions.

In order to extract the Yukawa couplings from the measurement of the selectron cross-
sections, it is necessary to use information about the neutralino system. Here it is assumed
that the neutralino sector has the form of the MSSM, essentially depending on the gaugino
parameters M1, M2 and the Higgs parameter µ. The dependence on tan β = vu/vd, the
ratio of the vacuum expectation values of the two Higgs doublets, is relatively mild and
can be neglected if the value of tan β can be extracted with moderate accuracy from
some other measurement like Higgs decay branching ratios. Thus the three parameters
M1, M2 and µ can be determined from the measurement of three chargino or neutralino
masses. Here the two chargino masses and the lightest neutralino mass have been used,
assuming the following—rather conservative—experimental errors: δmχ̃±

1
= 100 GeV,

δmχ̃±
2

= 400 GeV, δmχ̃0
1

= 100 GeV. The total slepton cross-sections and signal-to-

background ratios can be enhanced by suitable beam polarization. It is assumed that the
polarization degree can be controlled up to 1%. The backgrounds are further reduced
by applying appropriate cuts [2, 13]. As before, the same decay modes and final state
signatures listed in the first column of Tab. 1 have been used.

The resulting constraints on the Yukawa couplings ĝ1 and ĝ2 from selectron cross-
section measurements are depicted in Fig. 2. From the figure the following resulting
accuracies are obtained:

e+e− : δĝ1/ĝ1 ≈ 0.18%, δĝ2/ĝ2 ≈ 0.8%, (2)

e−e− : δĝ1/ĝ1 ≈ 0.23%, δĝ2/ĝ2 ≈ 0.8%. (3)

On the other hand, from the measurement of the R-smuon production cross-section, the
smuon gauge coupling can be extracted with a total error of 1%.

Therefore it is clearly necessary to include radiative corrections in the theoretical
predictions for the slepton cross-sections in order to match the experimental accuracy.
As a first step the produced sleptons may be considered on-shell, since in the continuum
far above threshold the effect of the non-zero slepton width on the total cross-section is
relatively small, of the order Γ̃l/ml̃. Thus, the production and decay of the sleptons can
be treated separately. While the MSSM one-loop corrections to the decay of sleptons into
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Figure 2: 1σ bounds on the determination of the supersymmetric Yukawa couplings ĝ1

and ĝ2 from selectron cross-section measurements. The two plots compare the information
obtained from the cross-sections σRR = σ[e+ e− → ẽ+

R ẽ−R] and σRL = σ[e+ e− → ẽ±R ẽ∓L ] in
the e+e− mode (a) as well as σRR = σ[e− e− → ẽ−R ẽ−R] and σLL = σ[e− e− → ẽ−L ẽ−L ] in the
e−e− mode, respectively. Values for SPS1 scenario [3].

neutralinos and charginos, l̃± → l± χ̃0
i and l̃± →(−)

νl χ̃
±
i , have been computed in Refs. [6, 7],

the following sections will discuss the complete next-to-leading order corrections in the
MSSM to the production of scalar leptons.

4 Radiative corrections and renormalization

The computation of theO(α) corrections to scalar lepton production requires the inclusion
of all sectors of the electroweak MSSM in the loop contributions. In order to reduce the
number of parameters the following simplifications have been made:

All soft-breaking parameters of the MSSM are assumed to be real, i.e. only the case
of CP conservation is considered. The masses of the fermions of the first two generations
are neglected, and accordingly no mixing between the left- and right-chiral components
of the first and second generation sfermions occurs. On the other hand, due to the large
Yukawa couplings, the fermion masses and sfermion mixings in the third generation are
fully taken into account. The CKM matrix is assumed to be diagonal and no flavour
mixing between the sfermions is considered.

In this work the on-shell renormalization scheme has been used, which relates the
mass parameters to the pole position of the propagators and the electric charge to the
electron coupling in the Thompson limit. The gauge sector of the MSSM is renormalized
similar to the Standard Model gauge sector. The relevant expressions can be found e.g. in
Ref. [8]. For the production of scalar leptons of the first two generations, mixing between
the sleptons can be neglected, as mentioned above. Accordingly, the L- and R-sleptons
can be renormalized independently.
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A large number of MSSM couplings and masses depend on tan β = vu/vd. However,
the vacuum expectation values and tan β are not physical quantities, so that it is difficult
to relate tan β to an observable [9]. For technical reasons it is instead advantageous to
renormalize tan β in the DR scheme, which amounts to cancelling only the divergent part
in dimensional reduction with the counterterm. This definition of tan β has been used
here.

The mass spectrum of the two chargino and four neutralino states depends only on
three independent parameters, the superpotential parameter µ and the gaugino param-
eters M1 and M2. In our renormalization procedure, counterterms for these parameters
are introduced, which enter in the renormalization of the chargino and neutralino mass
matrices. The counterterms δM1, δM2, δµ are fixed by imposing on-shell conditions for
three of the six mass eigenvalues [10, 11]1, for which here the two chargino masses and
the lightest neutralino mass have been chosen:

δM2 =
1

µ2 −M2
2

[
(mχ̃±

2
µ−mχ̃±

1
M2) δmχ̃±

1
+ (mχ̃±

1
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2
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2
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(
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(4)

Here Σ±L,R,S
k and Σ0L,R,S

k are the left-, right-handed and scalar components of the un-
renormalized self-energy of the k-th chargino and neutralino, respectively. N denotes the
neutralino mixing matrix, which is taken at the tree-level since the above equations are
only required at the one-loop level. For more details on the renormalization procedure,
see Refs. [13, 7].

The UV-divergent loop integrals have been regularized using dimensional reduction
[14], which preserves gauge invariance and supersymmetry at least up to the one-loop
level. On the other hand, dimensional regularization, being widely used for Standard
Model calculations, is known to violate supersymmetry, which therefore in general needs
to be restored by extra counterterms. However, since dimensional regularization preserves
gauge invariance, no symmetry-restoring counterterms are required for the renormaliza-
tion of gauge couplings and masses. In fact, since the production of smuons only involves
gauge couplings at tree-level, the one-loop corrections can directly be computed both with
dimensional regularization and dimensional reduction. It has been explicitly checked that

1An alternative renormalization procedure has been given in Ref. [12] which is physically equivalent
at the one-loop level, but differs in the definition of the renormalized parameters M1, M2, µ.
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the results for smuon production agree for both methods. In the loop corrections to
selectron production, on the other hand, there is a finite difference between the two reg-
ularization schemes. Here dimensional reduction has been used.

The computation of the loop contributions was performed using the computer algebra
tools FeynArts 3.0 [15] and FeynCalc 2.2 [16]. Throughout the calculation, a general
Rξ gauge was used. By reducing the results to generic scalar one-loop integrals, the
gauge-parameter independence was explicitly verified.

In order to obtain IR-finite and physically meaningful results, the virtual corrections
to both processes have been supplemented with the real photon bremsstrahlung contribu-
tions. For the numerical analyses in the next section, the real photon emission has been
treated fully inclusive.

5 Discussion of one-loop results for µ̃ and ẽ pair pro-
duction

In the following numerical results are presented in the SPS1 scenario [3]. A large part
of the next-to-leading order corrections stems from universal QED contributions to the
electromagnetic coupling and initial-state photon radiation. The dominant contributions
to the electromagnatic coupling from light-fermion loops (i.e. all fermions except the
top-quark, which decouples) can easily be incorporated by a shift ∆α of the fine structure
constant α. The radiation of soft and collinear photons from the incoming e± leads to large
logarithmic corrections ∝ log(Q/me) with Q = O(

√
s). They can be taken into account

by convoluting the Born cross-section with a radiator function. These universal terms are
therefore dropped from the next-to-leading order result. The effect of the non-universal
residual corrections is then given by

∆α = (σNLO − σBorn)/σBorn, (5)

where σBorn is the Born cross-section including the universal QED effects.
The effect of the remaining non-universal O(α) corrections is shown in Fig. 3 for the

production of R-smuons in e+e− annihilation and in Fig. 4 (a) and (b) for the production
of R-selectrons in e+e− and e−e− collisions, respectively. The effect of the next-to-leading
order contributions amounts to 5–10%.

An interesting feature of the loop corrections to selectron production is, in contrast
to smuon production, the non-decoupling behaviour of supersymmetric particles in the
loops. This is related to the fact that the tree-level amplitude for smuon production
only involves gauge couplings, see Fig. 1 (a), whereas the t-channel diagrams to selectron
production involve the electron-selectron-neutralino Yukawa coupling, cf. Fig. 1 (b). The
origin of the non-decoupling effects can be illustrated by the renormalization group (RG)
running of the gauge and Yukawa coupling in the MS or DR scheme [17]. In the following,
the effect arising from quark/squark loops will be considered as an example.

Above the squark mass scale (Q > mq̃), supersymmetry is unbroken so that the gauge
coupling g(Q) and the Yukawa coupling ĝ(Q) are equal. At Q = mq̃ the squarks decouple
from the RG running of the couplings. While g(Q) still runs for Q < mq̃ because of quark
loop contributions, there is no running of ĝ(Q) from quark/squark loops below Q = mq̃.
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to the cross-section for
e+e− → µ̃+

Rµ̃−
R, relative

to the Born cross-section.
Separately shown are
full non-universal O(α)
contributions, the gen-
uine weak (non-QED)
corrections and the
QED corrections, includ-
ing soft and hard real
bremsstrahlung contri-
butions but no universal
ISR terms, The input
parameters are taken
from SPS1 scenario [3]
with mµ̃R

= 143 GeV.

When comparing the two couplings at the weak scale, e.g. Q = MW, they therefore differ
by a logarithmic term

ĝ(Q)/g(Q)− 1 ∝ log(mq̃/MW). (6)

It is obvious that this contribution does not vanish in the limit of large squark masses.
As mentioned before, the computation of the loop corrections to slepton production

in this work was performed in the on-shell scheme. In the on-shell scheme, all couplings
are manifestly scale-invariant, so that the relation g = ĝ remains valid to all orders
of perturbation theory. Nevertheless, in this scheme, the non-decoupling logarithmic
contributions are present in the loop corrections to the gauge bosons in gauge coupling
vertices and to the gauginos in gaugino-lepton-slepton vertices. By comparing the effective
vertices geff and ĝeff including one-loop corrections, one finds a corresponding relation to
eq. (6),

ĝeff/geff − 1 ∝ log(mq̃/MW). (7)

The effect of the squark loop contributions can also be seen in Fig. 5. As evident from
the figure, the µ̃+

Rµ̃−
R cross-section does not depend on the common squark soft-breaking

parameter MQ̃ = mq̃L
= mũR

= md̃R
for large values of MQ̃. On the other hand, for

increasing values of MQ̃, the size of the radiative corrections to ẽ−R ẽ−R production grows
logarithmically. For very large values of MQ̃ ∼ 100 TeV, the effect of the squark loops
can amount to a few percent.

In summary, the relevance of accurate theoretical predictions for the precise analysis of
slepton properties at a future linear collider has been outlined. The full next-to-leading
order corrections to the production of selectrons and smuons were presented and shown
to be sizeable, including potentially large non-decoupling effects from superpartners in
the loops.
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