Three Body Decays of $\tilde{\chi}_1^0$ in R_p violating models with dominant λ and λ' couplings.

Rohini M. Godbole

(CERN, Geneva)

Plan :

- 1. R_p violation in SUSY: why consider it and a few relevant facts.
- 2. Effects of \mathcal{R}_p at colliders.
- 3. Three body decays of $\tilde{\chi}_1^0$ via R_p
 - Couplings we consider
 - Why these particular ones?
- 4. Results
- 5. Conclusions

(hep-ph/ 0108244)

In collaboration with F. Borzumati, J.L. Kneur and F. Takayama.

Introduction

R_p violation in SUSY:

• No deep theoretical reason for its conservation \odot

▷ Actually B, L symmetries of the SM but **NOT** of the MSSM ▷ Supersymmetry and Gauge Invariance allow R_p terms in the Superpotential

$$W_{R_p} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c + \kappa_i L_i H_2,$$
(1)

 L_i, Q_i : doublet Lepton, Quark superfields, E_i, U_i, D_i the singlet Lepton and Quark superfields.

- ν masses can be generated in an economical way without introducing any new fields. \odot
- \triangleright Tree level via the Bilinear κ_i ,
- ▷ Quantum one or two loop level via the Trilinears λ, λ' ,
- ▷ Kamioka, SNO \longrightarrow Unambiguous proof of ν masses.

 \triangleright Enough freedom to generate the mass patterns required by all the data.

CERN, Geneva

Introduction

• No DM candidate, as the $\tilde{\chi}_1^0$ not stable, \mathfrak{S}

• Proton will decay **very rapidly** for \mathbf{TeV} scale SUSY breaking.

- Can be cured by adopting B conservation $\lambda'' = 0$. This choice preferred if we don't want R_p terms to wash out baryogenesis.
- Unified string theories actually prefer models with B conservation and R_p violation. \bigcirc
- \triangleright L.E.Ibanez and G.G.Ross, Nucl. Phys. B368 (1992) 3

These models treat the Lepton and the Quark fields differently and have two discrete symmetries. B conservation and R_p eliminates not just the dimension 4 operators for proton decay BUT also dimension 5.

- All this makes R_p theoretically interesting
- \bullet A large no. 48 Yukawa type couplings. No theoretical indications about their sizes. \odot

• Many of the unknown couplings constrained by low energy processes, e.g. Proton Decay, μ decay, cosmological arguments, e.g. the baryogenesis. O

CERN, Geneva

Introduction

 \triangleright A host of references!!

Majority of these come from virtual effects caused by sparticle exchanges via R_p interactions (loops).

•Constraints get less severe for λ, λ' with increasing number of third generation indices.

•Virtual effects depend on sparticle masses.

•Sometimes can also depend on a lot of other details of the SUSY model e.g. the L-R mixing in the sfermion sector etc.

• The L violating couplings can be constrained severely particularly by ν masses. Constraints quite model dependent.

Important to study the effects of the same \mathcal{R}_p couplings in collider environment, which can help clarify model building.

R_p violation at the colliders.

Effects of R_p violation at Colliders:

• Depend on the size of the coupling.

> LSP no longer stable. It need not even be $\tilde{\chi}_1^0$. If ANY R_p coupling is $> 10^{-6}$ it WILL decay within the detector

S. Dawson, NPB**261**(1985) 297.

▷ We take $\tilde{\chi}_1^0$ to be the LSP. The decays can and will give rise to strikingly different final states.

For example, RMG, P.Roy, X.Tata, NPB**401** (1993) 67.

 $\tilde{\chi}_1^0 \to f \bar{f}_1 f_2$ (more on these decays later). For masses of $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}$ of interest at LHC,NLC, even a t in the final state will be allowed.

▷ For larger R_p couplings more things can happen

– Decays of particles and sparticles other than the LSP via $R \!\!\!/_p$ interactions

For example, D.K.Ghosh et al, PLB **396** (1997) 177; T.Han, M.B.Magro, PLB **476** (2000) 79; A.Belyaev et al, PLB **484** (2000) 79, G. Polesello et al, 2002.

 $\tilde{t} \rightarrow bl, t \rightarrow b\tilde{l}$

- Some more on the particle decays later.

CERN, Geneva

Rohini Godbole

R_p violation at the colliders.

– Virtual effects of sparticle exchange on tree level processes. $pp \to \mu^+ \mu^-$

G.Bhattacharyya, et al PLB **349**, 118 (1995), J.Hewett, T.Rizzo, PRD **56** (1997) 5709, D. Choudhury, R.M.G, hep-ph/0005142.

$pp \to t\bar{t}$

D. Choudhury, R.M. Godbole, P. Poulose and S.D. Rindani (in preparation), K.Hikasa, J.M.Yang and B.Young, Phys. Rev. D **60** (1999) 114041.

 R_p contribution to $t\bar{t}$ produces a polarisation asymmetry bet. t and \bar{t} .

R_p violation at the colliders.

- Resonant or nonresonant production of a single sparticle via the \mathcal{R}_p couplings

G.Moreau, et al, NPB **604** (2001) 3; H.Dreiner et al, PRD **63** (2001) 055008, F. Borzumati, et al PR**D60** (1999) 115011.

For example, $pp \to t\bar{b}\tilde{\tau}$ via λ'_{333} . Similar to H^- produced via $t\bar{b}H^-$ coupling.

▷ Even for $m_{\tilde{t}} > m_t$ rates appreciable for λ'_{333} as small as 0.05. ▷ $\tilde{\tau}$ so produced will have both R_p and RPC decays. RPC decays will produce $\tilde{\chi}_1^0$.

 \triangleright Some of these decays can fake the charged Higgs signal.

▷ A comprehensive study requires full analysis of the three body decays of the $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}$.

CERN, Geneva

Rohini Godbole

Three body R_p decays of $\tilde{\chi}_1^0$.

• λ with more than one third generation index not constrained too much by collider experiments.

• Models for ν masses on the other hand can constrain these.

• Probes of the L violating λ, λ' couplings at the colliders that involve studying the physics of the third generation t, b and τ will certainly provide important inputs to model building when taken in conjunction with ν mass issue.

• Third generation sfermions likely to give rise to larger virtual effects as they are expected to be lighter.

• For $\tilde{\chi}_1^0, \tilde{\chi}_1^+$ with masses of interest at the *LHC*, *NLC*, final states with third generation fermions including t are possible.

• One needs a study of the \mathcal{R}_p decays of $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}$ retaining effects of the mass of the third generation fermions, for L violating coupling.

• Formulae had been derived including the mass effects by Dreiner et al, JHEP **0004** (2000) 008. Our formulae, in the limit of real L-R sfermion mass term, agree with theirs. Their analysis focuses on the effects of the B violating couplings.

Three body R_p decays of $ilde{\chi}_1^0$.

• What has been done by us?

- Calculated 3 body R_p decays of the $\tilde{\chi}_1^0$ with dominant λ, λ' couplings involving at least two three generation indices.

- Kept the mass effects of the third generation fermions and the sfermion L-R mixing terms complex.

- Analysed numerically for cases with unified/ununified gaugino masses, including effect of subdominant λ, λ' .

- Our code can be used to implement three body decays of the lightest neutralino with one dominant R_p and L violating coupling. Generalisation to more than one subdominant couplings is easy.

- Analysed decays into purely third generation final state fermions including t.

Three body R_p decays of $ilde{\chi}_1^0$.

 λ'_{333}

Decays of the $\tilde{\tau}$:

 R_p conserving decay:

$$\tilde{\tau} \to \tau \tilde{\chi}_1^0, \tilde{\tau} \to \nu_\tau \tilde{\chi}_1^-, \qquad m_t > m_{\tilde{\tau}}$$

 R_p decay:

 $\tilde{\tau} \to b\bar{t}$ $m_t < m_{\tilde{\tau}}.$

If the \mathcal{R}_p coupling is sizable the net final state produced decided by relative branching ratios of $\tilde{\chi}_1^0, \tilde{\chi}_1^+$ into different channels.

Production of $\tilde{\tau}$ through R_p couplings and its decay via the same will give rise to

 $pp \to t\bar{b}\tilde{\tau}X \to t\bar{b}t\bar{b}X$

* The same final state as the H^{\pm} .

RPC decays of the $\tilde{\tau}$ and R_p decays of the $\tilde{\chi}_1^0$ can also produce $pp \to t\bar{b}\tilde{\tau}X \to (2t)(2b)(2\tau)X$ $\to tb \ (2\bar{b}) \ \tau\nu_{\tau}X$

etc.

* Characteristic L violating decays of $\tilde{\chi}_1^0$: like sign fermion pairs.

CERN, Geneva

Results.

λ'_{333} Dominant:

• Decays of the $\tilde{\chi}_1^0$ $\triangleright \tilde{\chi}_1^0 \rightarrow b \bar{b} \nu_{\tau}$ $m_{\tilde{\chi}_1^0} < m_t \text{ MASSLESS}$ $\triangleright \tilde{\chi}_1^0 \rightarrow \bar{b} t \nu_{\tau} + \text{C.C.}$ $m_{\tilde{\chi}_1^0} > m_t \text{ MASSIVE}$

▷ For a Wino like $\tilde{\chi}_1^0$, in the absence of the L-R mixing the second diagram with a \tilde{b}_R exchange will not contribute.

▷ A substantial gaugino/higgsino mixing causes an increase in the width into massive mode for low $\tan \beta$ and into massless mode for large $\tan \beta$.

▷ In the results we present widths of the charge conjugate modes $t\bar{b}\nu_{\tau}$ and $\bar{t}b\bar{\nu}_{\tau}$ is given separately.

CERN, Geneva

--Wino like $\tilde{\chi}_1^0$ Solid line $\tilde{\chi}_1^0$ Bino like.

Left panel: no L-R mixing in the Squark sector.

Right Panel:Moderate left right entries. $A_t - \mu \cot \beta = 150 \text{ GeV},$ $A_b - \mu \tan \beta = 2000.$

 M_* is a squark mass scale. $M_{\tilde{\chi}_1^0} = 600$ GeV.

 \triangleright The massless mode is the larger one, but massive mode is not negligible either.

▷ Enhancement of the widths by an order of magnitude for $\tilde{\chi_1^0} \sim \tilde{W}$.

▷ With moderate L-R squark mixing, even for $\tilde{\chi}_1^0 \sim \tilde{W}$, the \tilde{b} mediated diagram contributes to massive mode. Smaller \tilde{t}_1, \tilde{b}_1 , masses enhance the width for the massive mode for a \tilde{B} like $\tilde{\chi}_1^0$.

CERN, Geneva

 $b\bar{b}\nu_{\tau}$ decay width : solid line $t\bar{b}\nu$ width : dashed line. Left panel: $\tan \beta = 3$ Trilinear soft terms = 350 GeV Right Panel: $\tan \beta = 30$, Trilinear soft terms = 150 GeV. M_* is the squark mass scale. $M_{\tilde{B}}$, slepton mass and $\mu = 600$ GeV.

▷ The massive mode is larger at lower $\tan \beta$ and the massless one for the higher values.

▷ With λ'_{333} dominant, the massive decay has a large width for low tan β and large higgsino-gaugino mixing. Otherwise the massless mode is larger, though the massive mode is nonnegligible.

CERN, Geneva

Rohini Godbole

•Dependence on λ'_{333} value.

 $b\bar{b}\nu_{\tau}$ decay width : solid line; $t\bar{b}\nu$ width : long dashed line.

All the other parameters same as in the earlier case.

▷ In the resonant sfermion region very little dependence on λ'_{333} and otherwise scales down simply like λ'^2_{333} .

• Comparable λ and λ' couplings.

 $b\bar{b}\nu_{\tau}$ decay width : solid line; $t\bar{b}\tau$ width: long dashed line. $\tau\bar{\tau}\nu_{\mu}$ decay width : small dashed line; $\mu\bar{\tau}\nu_{\tau}$ width : dotted line. Left panel:Widths, Right Panel:B.R., No L-R mixing, $\mu = 500$ GeV, tan $\beta = 3$, Bino mass = 500 GeV.

- \triangleright All the widths are not too dissimilar
- \triangleright B.R. into a final state with t is not too small.

Conclusions.

- Important to have a collider probe of the R_p , λ and λ' couplings with more than one third generation index.
- Single charged slepton production via the R_p coupling λ'_{i33} can produce final states which can be confused with the H^{\pm} signal.
- Even for smaller but dominant R_p , λ and λ' couplings with more than one third generation index, the three body R_p decays of $\tilde{\chi}_1^0$, $\tilde{\chi}_1^+$ can have important phenomenological consequences for new particle searches at the future colliders.
- If the $\tilde{\chi}^0_1$ is 'Wino' like its decay widths increases by over an order of magnitude.
- If the $\tilde{\chi}_1^0$ is lighter than the t, its R_p decays will be dominantly into massless fermions: $b\bar{b}\nu_{\tau}$ for dominant λ'_{333} coupling, $c\bar{b}\tau, s\bar{b}\nu_{\tau}$ and the charge conjugate modes $\bar{c}b\bar{\tau}, \bar{s}b\bar{\nu}_{\tau}$ for dominant λ'_{323} , whereas for λ_{233} it is $\bar{\mu}\tau\nu_{\tau}$ and $\mu\bar{\tau}\bar{\nu}_{\tau}$.
- For a $\tilde{\chi}_1^0$ heavier than the *t* the massive decay modes can become competitive for large L-R sfermion mass term and /or for substantial mixing in the higgsino/gaugino sector, at not too large tan β .
- All the R_p decays of the $\tilde{\chi}_1^0$ produce final states with like sign dileptons as the telltale signature of the *L* violation, as long as the final state *t* decays hadronically.

CERN, Geneva