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Abstract

We analyze the partial decay widths of sfermions decaying into charginos and neu-
tralinos Γ(f̃ → f ′χ) at the one-loop level. We present the renormalization frame-
work, and discuss the value of the corrections for top- and bottom-squark decays.

1 Introduction

One of the basic predictions of Supersymmetry (SUSY) is the equality between the cou-
plings of SM particles and that of their superpartners. The simplest processes in which
this predicition could be tested, is the partial decay widths of sfermions into Standard
Model (SM) fermions and charginos/neutralinos:

Γ(f̃ → f ′χ) . (1)

By measuring these partial decay widths (or the corresponding branching ratios) one
could measure the fermion-sfermion-chargino/neutralino Yukawa couplings and compare
them with the SM fermion gauge couplings.

We have computed the full one-loop electroweak corrections to the partial decay
widths (1). As we will show, the radiative corrections induce finite shifts in the cou-
plings which are non-decoupling.

The QCD corrections to the process (1) were computed in [1], and the Yukawa cor-
rections to bottom-squarks decaying into charginos was given in [2]. Here we present
the last step, namely, the full electroweak corrections in the framework of the Minimal
Supersymmetric Standard Model (MSSM). Full details of the present work can be found
in [3].

2 Renormalization and radiative corrections

The computation to one-loop level of the partial decay width (1) requires the renormaliza-
tion of the full MSSM Lagrangian, taking into account the relations among the different
sectors and the mixing parameters. We choose to work in an on-shell renormalization
scheme, in which the renormalized parameters are the measured quantities. The SM sec-
tor is renormalized according to the standard on-shell SM α-scheme [4], and the MSSM
Higgs sector (in particular the renormalization of tanβ) is treated as in [5].
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As far as the sfermion sector is concerned, we follow the procedure described in [2].
However, in the present analysis we treat simultaneoulsy top-squarks and bottom-squarks.
Due to SU(2)L invariance the parameters in these two sectors are not independent, and
we can not supply with independent on-shell conditions for both sectors. We choose as
input parameters the on-shell masses of both bottom-squarks, the lightest top-squark
mass, and the mixing angles in both sectors1:

(mb̃1
, mb̃2

, θb, mt̃2 , θt), mf̃1
> mf̃2

. (2)

The remaining parameters are computed as a function of those in (2). In particular, the
trilinear soft-SUSY-breaking couplings read:

A{b,t} = µ{tanβ, cotβ}+
m2

f̃1
−m2

f̃2

2mf
sin 2 θf , (3)

with tanβ = v2/v1, the ratio of the vacuum expectation values of the two Higgs boson
doublets. The approximate (necessary) condition to avoid colour-breaking minima in the
MSSM Higgs potential [6],

A2
q < 3 (m2

t̃ + m2
b̃
+ M2

H + µ2) , (4)

imposes a tight correlation between the sfermion mass splitting and the mixing angle
at large tanβ. Since the heaviest top-squark mass (mt̃1) is not an input parameter, it
receives finite radiative corrections:

∆m2
t̃1

= δm2
t̃1

+ Σt̃1(m
2
t̃1
) , (5)

where δm2
t̃1

is a combination of the counterterms of the parameters in (2), and the coun-
terterms of the gauge and Higgs sectors.

The chargino/neutralino sector contains six particles, but only three independent input
parameters: the soft-SUSY-breaking SU(2)L and U(1)Y gaugino masses (M and M ′), and
the higgsino mass parameter (µ). The situation in this sector is quite different from the
sfermion case, since in this case no independent counterterms for the mixing matrix ele-
ments can be introduced. We stick to the following procedure: First, we introduce a set of
renormalized parameters (M,M ′, µ) in the expression of the chargino and neutralino ma-
trices (M and M0), and diagonalize them by means of unitary matrices MD = U∗MV †,
M0

D = N∗M0N †. Now U , V and N must be regarded as renormalized mixing matrices.
The counterterm mass matrices are then δMD = U∗δMV †, δM0

D = N∗δM0N †, which
are non-diagonal. At this point, we introduce renormalization conditions for certain el-
ements of δMD and δM0

D. In particular, we use on-shell renormalization conditions for
the two chargino masses (M1 and M2), which allows to compute the counterterms δM
and δµ. This information, together with the on-shell condition for the lightest neutralino
mass (M0

1 ) allows to derive the expression for the counterterm δM ′. The other neu-
tralino masses (M0

2,3,4) receive radiative corrections. In this framework the renormalized
one-loop chargino/neutralino 2-point functions are non-diagonal. Therefore one must

1Throughout this work we make use of third generation notation. The notation is as in [2, 3].
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take into account this mixing either by including explicitly the reducible χr − χs mix-
ing diagrams, or by means of external mixing wave-function terms (Z0βα

{L,R}, Z−ij
{L,R}). See

Refs. [7] for different (but one-loop equivalent) approaches to the renormalization of the
chargino/neutralino sector.2

The complete one-loop computation consists of:

• renormalization constants for the parameters and wave functions in the bare La-
grangian,

• one-loop one-particle irreducible three-point functions,

• mixing terms among the external charginos and neutralinos,

• soft- and hard- photon bremsstrahlung.

All kind of MSSM particles are taken into account in the loops: SM fermions, sfermions,
electroweak gauge bosons, Higgs bosons, Goldstone bosons, Fadeev-Popov ghosts, charginos,
neutralinos. The computation is performed in the ’t Hooft-Feynman gauge, using dimen-
sional reduction for the regularization of divergent integrals. The loop computation itself
is done using the computer algebra packages FeynArts 3.0 and FormCalc 2.2 [9, 10]. The
numerical evaluation of one-loop integrals makes use of LoopTools 1.2 [10].3

3 Results

The results show the very interesting property that none of the particles of the MSSM
decouples from the corrections to the observables (1). This can be well understood in terms
of renormalization group (RG) running of the parameters and SUSY breaking. Take, e.g.,
the effects of squarks in the electron-selectron-photino coupling. Above the squark mass
scale (Q > mq̃) the electron electromagnetic coupling (α(Q)) is equal (by SUSY) to the
electron-selectron-photino coupling (α̃(Q)), and both couplings run according to the same
RG equations. At Q = mq̃ the squarks decouple from the RG running of the couplings.
At Q < mq̃, α(Q) runs due to the contributions from pure quark loops, but α̃(Q) does
not run anymore, and it is frozen at the squark scale, that is: α̃(Q < mq̃) = α(mq̃).
Therefore, when comparing these two couplings at a scale Q < mq̃, they differ by the
logarithmic running of α(Q) from the squark scale to Q: α̃(Q)/α(Q)− 1 = β log(mq̃/Q).

The above discussion has two important consequences:

1. The non-decoupling can be used to extract information of the high-energy part of
the SUSY spectrum: one can envisage a SUSY model in which a significant splitting
among the different SUSY masses exists, e.g. mq̃ � ml̃, where the sleptons lie below
the production threshold in an e+e− linear collider, but the squarks are above it.
By means of high precision measurements of the lepton-slepton-chargino/neutralino
couplings one might be able to extract information of the squark sector of the model,
to be checked with the available data from the LHC.

2See Ref. [8] for a review of radiative corrections to SUSY processes.
3The resulting FORTRAN code can be obtained from
http://www-itp.physik.uni-karlsruhe.de/∼guasch/progs/.
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2. By the same token, it means that the value of the radiative corrections depends on all
parameters of the model, and we can not make precise quantitative statements unless
the full SUSY spectrum is known. This drawback can be partially overcome by the
introduction of effective coupling matrices, which can be defined as follows. The sub-
set of fermion-sfermion one-loop contributions to the self-energies of gauge-boson,
Higgs-bosons, Goldstone-bosons, charginos and neutralinos form a gauge invariant
finite subset of the corrections. Therefore these contributions can be absorbed into
a finite shift of the chargino/neutralino mixing matrices U , V and N appearing in
the couplings: Ueff = U + ∆U (f), V eff = V + ∆V (f), N eff = N + ∆N (f). In
this way we can decouple the computation of the universal (or super-oblique [11])
corrections. These corrections contain the non-decoupling logarithms from sfermion
masses.

As an example of the universal corrections we have computed the electron-selectron
contributions to the ∆U (f) and ∆V (f) matrices, assuming zero mixing angle in the
selectron sector (θe = 0), we have identified the leading terms in the approximation
mẽi

, mν̃ � (MW ,Mi) � me, and analytically cancelled the divergences and the renor-
malization scale dependent terms; finally, we have kept only the terms logarithmic in the
slepton masses. The result for ∆U (f) reads as follows:

∆U
(f)
i1 =

α

4 π s2
W

log

(
M2

ẽL

M2
X

) [
U3

i1

6
− Ui2

√
2MW (M cβ + µ sβ)

3 (M2 − µ2) (M2
1 −M2

2 )
2

(
M4 −M2 µ2+

+3M2 M2
W + µ2 M2

W + M4
W + M4

W c4β + (µ2 −M2)M2
i + 4M µM2

W s2β

) ]
,

∆U
(f)
i2 =

α

4 π s2
W

log

(
M2

ẽL

M2
X

)
Ui1

MW (M cβ + µ sβ)

3
√

2 (M2 − µ2) (M2
1 −M2

2 )
2 ×

×
(
(M2 − µ2)2 + 4M2 M2

W + 4µ2 M2
W + 2M4

W + 2M4
W c4β + 8M µM2

W s2β

)
,(6)

M2
ẽL

being the soft-SUSY-breaking mass of the (ẽL, ν̃) doublet, whereas MX is a SM
mass. In the on-shell scheme for the SM electroweak theory we define parameters at
very different scales, basically MX = MW and MX = me. These wide-ranging scales
enter the structure of the counterterms and so must appear in eq.(6) too. As a result
the leading log in the various terms of this equation will vary accordingly. For simplicity
in the notation we have factorized logM2

ẽL
/M2

X as an overall factor. In some cases this
factor can be very big, logM2

ẽL
/m2

e; it comes from the electron-selectron contribution to
the chargino-neutralino self-energies.

In Fig. 1 we show the relative correction to the matrix elements of U for a sfermion
spectrum around 1 TeV. The thick black lines in Fig. 1 correspond to spurious divergences
in the relative corrections due to the renormalization prescriptions. Corrections as large
as ±10% can only be found in the vicinity of these divergence lines. However, there exist
large regions of the µ − M plane where the corrections are larger than 2%, 3%, or even
4%.

The effects of the universal corrections to the partial decay widths (1) are shown in
Fig. 2 for top- and bottom-squark decays as a function of a common slepton mass. Here
(and in most of the discussion below) we show the corrections to the total decay widths
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Figure 1: Relative correction to the effective chargino coupling matrix ∆U (f)/U in the
M − µ plane, for tanβ = 4 and a sfermion spectrum around 1 TeV (ml̃2

= md̃2
= mũ2 =

1 TeV , ml̃1
= md̃1

= ml̃2
+ 5 GeV , θl = θq = θb = 0 , θt = −π/5).

of sfermions into charginos and neutralinos, that is

δ(f̃a → f ′χ) =

∑
r

(
Γ(f̃a → f ′χr) − Γ0(f̃a → f ′χr)

)
∑

r Γ0(f̃a → f ′χr)
, (7)

with χ = χ± or χ = χ0. We will not show results for processes whose branching ratio are
less that 10% in all of the explored parameter space. The default parameter set used is:

tan β = 4 , mt = 175 GeV , mb = 5 GeV , mb̃2
= md̃2

= mũ2 = mẽ2 = 300 GeV ,
mb̃1

= md̃1
= mẽ1 = mb̃2

+ 5 GeV , mũ2 = 290 GeV , mt̃2 = 300 GeV ,
θb = θd = θu = θe = 0 , θt = −π/5 , µ = 150 GeV ,M = 250 GeV ,MH± = 120 GeV ,

(8)
The logarithmic behaviour from eq. (6) is evident in this figure. The logarithmic regime
is attained already for slepton masses of order 1 TeV. The universal corrections are seen
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Figure 2: Universal relative corrections (7) to third generation squark partial decay widths
as a function of a common slepton mass using the input parameter set (8).

to be positive for all squark decays, ranging between 4% and 7% for slepton masses below
1 TeV.

Although above we have singled out the non-decoupling properties of sfermions, we
would like to stress that the whole spectrum shows non-decoupling properties. By numer-
ical analysis we have been able to show the existence of logarithms of the gaugino mass
parameters (M/MX and M ′/MX), and the Higgs mass (MH±/MX). However, due to the
complicated mixing structure of the model, we were not able to derive simple analytic ex-
pressions containing these non-decoupling logarithms. Note that in any observable which
includes the fermion-sfermion-chargino/neutralino Yukawa couplings at leading order we
will have this kind of corrections, therefore the full MSSM spectrum must be taken into
account when computing radiative corrections, since otherwise one could be missing large
logarithmic contributions of the heavy masses.

As for the non-universal part of the contributions, they show a rich structure, as can
be seen in Fig. 3. There we show the evolution of the corrections as a function of the µ
parameter for top- and bottom-squark decays. A number of divergences are seen in the
figure, ones related to the mass renormalization framework (at |µ| = M), and others due
to threshold singularities in the external wave function renormalization constants. It is
clear that the precise value of the corrections is very much dependent on the correlation
among the different SUSY masses.

An important contribution to the corrections of third-generation sfermion decays is
the threshold correction to the bottom-quark (τ -lepton) Yukawa coupling (∆m{b,τ}) [12].
In the processes under study (1) two kind of contributions appear: first, the genuine
corrections ∆m{b,τ} from SUSY loops in the fermion self-energy; and second in the loops

of sfermion self-energies mixing different chiral states f̃L ↔ f̃R. This kind of corrections
grow with the sfermion mass splitting, the sfermion mixing angle, and tanβ.

A complementary set of corrections corresponds to the genuine three-point vertex func-
tions including Higgs bosons in the loops. These contributions are proportional to the
soft SUSY-breaking trilinear couplings (3), and therefore potentially large. Concretely, if
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Figure 3: Non-universal corrections to the partial decay width of top- and bottom-squarks
as a function of the higgsino mass parameter µ. The shaded regions correspond to the
violation of the condition (4).

tan β is large, and the bottom-squark mass splitting (or the mixing angle) is small, the
bottom-squark trilinear coupling grows with tan β (Ab � µ tanβ), eventually inducing
corrections larger than 100%, spoiling the validity of perturbation theory. In Fig. 4a
we show the evolution of the corrections to the lightest bottom-squark decay into neu-
tralinos as a function of tanβ using the parameter set (8). We see the fast growing of
the corrections, reaching −100% at tanβ � 30. Fortunately, applying the (necessary)
restriction (4) keeps the Aq parameter small. In Fig. 4b we show again the evolution of
the corrections as a function of tanβ, but this time keeping a fixed value for the trilinear
couplings Ab = 600 GeV, At = −78 GeV. The figure shows that the corrections stay well
below 10% all over the tanβ range for this channel.

The complementarity between the ∆m{b,τ}-like and the Af -like corrections is as follows:
at large tanβ, if the bottom-squark mass splitting is large, there will be large corrections
of type ∆m{b,τ}; on the other hand, if the bottom-squark mass splitting is small, there will
be large corrections of the type Af . Note that the QCD corrections contain ∆mb terms
but not Af terms. When analyzing QCD corrections alone, one could choose a small
splitting, obtaining small corrections, however we have seen that this is inconsistent, so
one is forced to a large ∆mQCD

b contribution, which can reinforce (or screen) the negative
corrections from the standard running of the QCD coupling constant4.

It is known that the electroweak corrections to any process grow as the logarithm
squared of the process energy scale due to the Sudakov double-logs [13]. We have observed
this behaviour in the process under study.

At the end of the day, we want to analyze the branching ratios, which are the true
observables. For this analysis we have to add the QCD corrections to the EW corrections.
Due to the large value of the QCD corrections, we made use of the enhanced resummed
expression for the bottom-quark Yukawa coupling [14]. In Table 1 we show the tree-level

4Though it is not possible to separate between standard gluon corrections and gluino corrections, one
can talk qualitatively about the contributions of the different sectors.
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Figure 4: Non-universal relative corrections to the lightest bottom-squark partial decays
widths into neutralinos as a function of tanβ. a) Keeping fixed the splitting between the
bottom-squarks mb̃1

− mb̃2
= 5 GeV. b) Keeping Ab = 600 GeV, At = −78 GeV. The

shaded region corresponds to the violation of the condition (4).

χ0
1 χ0

2 χ0
3 χ0

4 χ+
1 χ+

2

BRtree(t̃1 → qχ) 0.169 0.249 0.145 - 0.159 0.278
BRQCD(t̃1 → qχ) 0.164 0.257 0.144 - 0.099 0.335
BRtotal(t̃1 → qχ) 0.177 0.242 0.143 - 0.122 0.316

BRtree(t̃2 → qχ) 0.058 - - - 0.942 -
BRQCD(t̃2 → qχ) 0.063 - - - 0.937 -
BRtotal(t̃2 → qχ) 0.065 - - - 0.935 -

BRtree(b̃1 → qχ) 0.272 0.092 0.047 0.014 0.575 -

BRQCD(b̃1 → qχ) 0.308 0.104 0.031 0.018 0.538 -

BRtotal(b̃1 → qχ) 0.291 0.092 0.031 0.018 0.568 -

BRtree(b̃2 → qχ) 0.502 0.332 0.123 - 0.042 -

BRQCD(b̃2 → qχ) 0.541 0.386 0.054 - 0.019 -

BRtotal(b̃2 → qχ) 0.528 0.395 0.056 - 0.020 -

Table 1: Tree-level and corrected branching ratios of top- and bottom-squark decays into
charginos and neutralinos for the parameter set (8) and mg̃ = 500 GeV. Branching ratios
below 10−3 are not shown.

and corrected branching ratios for top- and bottom-squarks using the input parameter
set (8) and mg̃ = 500 GeV. From inspection of Table 1 we see that the EW corrections
can induce a change on the branching ratios of the leading decay channels of squarks
comparable to the QCD corrections. Therefore both contributions must be taken into
account on equal footing in the analysis of the phenomenology of sfermions.
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