the CDFII Collaboration

490 physicists from 41 institutions representing 8 countries

CDF physicists

US

Canada 3%

Taiwan 3%

Germany 2%

Japan 9%

Italy 20%

SUSY02, DESY Hamburg

Carmine Elvezio Pagliarone
Fermilab Tevatron Collider

Main Injector and Recycler

Booster

p source

SUSY02, DESY Hamburg

Carmine Elvezio Pagliarone
The Fermilab Accelerator Complex

- Main Injector (150 GeV proton storage ring) replaces Main Ring (the original accelerator);
- Completely revamped stochastic cooling system for antiprotons;
- A new permanent magnet Recycler storage ring for antiprotons;
- Increased number of p and p-bar bunches: $6 \rightarrow 36$ (396 ns) \rightarrow ~100 (132 ns)
- Higher center of mass energy 2 TeV achieved increasing the beam Energies $900 \rightarrow 980$ GeV
Tevatron Collider Improvements

\[L = \frac{3 \gamma_r f_0}{\beta^*} N_B N_p \]

Total Antiprotons

\[p \text{ per bunch} \]

Physics Opportunities

- Top
- Higgs
- QCD
- Electroweak
- B Physics
- New Phenomena

<table>
<thead>
<tr>
<th></th>
<th>Run 1b</th>
<th>Run 2a</th>
<th>Run 2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>#bunches</td>
<td>6x6</td>
<td>36x36</td>
<td>140x103</td>
</tr>
<tr>
<td>(\sqrt{s}) (TeV)</td>
<td>1.8</td>
<td>1.96</td>
<td>1.96</td>
</tr>
<tr>
<td>typ L (cm(^{-2})s(^{-1}))</td>
<td>1.6x10(^{30})</td>
<td>8.6x10(^{31})</td>
<td>5.2x10(^{32})</td>
</tr>
<tr>
<td>(\int L dt) (pb(^{-1})/week)</td>
<td>3.2</td>
<td>17.3</td>
<td>105</td>
</tr>
<tr>
<td>bunch xing (ns)</td>
<td>3500</td>
<td>396</td>
<td>132</td>
</tr>
<tr>
<td>interactions/xing</td>
<td>2.5</td>
<td>2.3</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Tevatron Run I History

Discovered: top, B_c, diffractive...
Measured: M_W, M_{top}, \sigma(t), \sin 2\beta, ...

L_{tot} = 110 \text{ pb}^{-1}
\sqrt{s} = 1.8 \text{ TeV}
Run II Luminosity Expectations

Run I (Oct 92 → Feb 96) ~ 120⁻¹ pb/Detector

Tevatron Run 1 Luminosity

\[\sqrt{s} = 2 \text{TeV} \]

~ 1 yr to get x 10
Steady progress after that...

0.1 fb⁻¹

2 fb⁻¹ 15 fb⁻¹

5 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}

2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}
Recent Machine Performance

- **Peak luminosity still low but improving**
 - X2 since January 2002
 - Best 2×10^{31}

- **Delivered/on tape**
 - 40/25 pb$^{-1}$

Near Term
- > 60 pb$^{-1}$ by July shutdown
- > 100 pb$^{-1}$ by end of 2002
Short term Luminosity Prospects

- Massive effort put into understanding and improving Luminosity
 - Fixed Accumulator → MI optics
 - Much work on stabilizing tunes in injection and low beta squeeze
 - Fight large antiproton emittances
 - Work on accumulator lattice to reduce beam heating
 - Access early June to add transverse cooling to accumulator is expected to improve L by factor 2-4
 - Max luminosity achievable without Recycler ~8x10^{31} (maybe by the end of 2002)

- Need recycler to get to 2x10^{32}
 - Major shutdown in October ’02 to finish Recycler work
 - Full benefits of Recycler ~Summer 2003
- Endplug Calorimeter
- Tracking
 - Layer 00
 - SVX II
 - ISL
 - COT
- Front End Electronics
- Trigger (pipelined)
- DAQ System
- Muon Systems
- Luminosity Monitor
- TOF
- Offline Software

CDF II

SUSY02, Hamburg

Carmine Elvezio Pagliarone
The CDFII Tracking System

• **Central Outer Tracker (COT):**
 - open cell drift chamber
 - maximum drift time 100ns
 - Small cell size, Fast gas
 - single hit resolution ~200 µm
 - excellent pattern recognition
 - improved stereo capabilities

• **Silicon Tracker System:**
 - increased z coverage (length ~ 1m)
 - η coverage up to | η | < 2
 - **3-D** track reconstruction
 - impact parameter resolution
 - \(\sigma_{\phi} < 30 \) µm
 - \(\sigma_{z} < 60 \) µm

• 3 different detectors: ≈750,000 channels
 - **L00:** inner most, \(R = 2.5 \) cm, rad-hard, SS
 - **SVXII:** 5 layers, 3<R<10 cm, DS (90 and sas)
 - **ISL:** 2 layers, 10<R<20 cm and large η, DS

Trigger System: two main improvements
- XFT: track reconstruction at L1
- SVT: displaced track triggering at L2
Run II detector improvements

- Improved z coverage of Silicon tracker ⇒
 +50% of Run I geometrical acceptance (top)

- 3D vertexing capabilities ⇒
 better fake rejection

- Track reconstruction can be extended to
 1<\eta<2 ⇒ several major effects:
 - b-tagging (recover ~30% of b’s in tt events)
 - lepton ID (electrons in Plug calorimeter)

- Increased muon system acceptance by 12% ⇒
 affects trigger, ID and SLT efficiency

<table>
<thead>
<tr>
<th>Efficiencies (%)</th>
<th>Run I</th>
<th>Run II</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVX(b-jet)</td>
<td>44</td>
<td>65</td>
</tr>
<tr>
<td>SLT(b-jet)</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>
CDF-II Status

- **Detector:**
 - All systems installed and commissioned;

- **DAQ and trigger:**
 - Running physics trigger table with > 100 trigger paths since Feb ’02
 - New SVT very successful
 - Typical running conditions:
 - \(L1: 3.5 \text{KHz} \), \(L2: 200 \text{Hz} \), \(L3: 20 \text{Hz} \)

- **Data processing:**
 - Reconstruction farm keeps up with data logging
 - Physics groups skim data:
 - Observe signals from low and high \(P_T \) triggers: \(\psi, D, B, W, Z \)
Run I Successes

CDF B Lifetimes

- $\tau(B^0) = 1.51 \pm 0.05$ ps
- $\tau(B^+) = 1.66 \pm 0.05$ ps
- $\tau(B_s^0) = 1.36 \pm 0.10$ ps
- $\tau(A^0) = 1.32 \pm 0.17$ ps
- $\tau(B_s^+) = 0.46 \pm 0.17$ ps
- $\tau(B^+)/\tau(B^0) = 1.09 \pm 0.05$

CDF Δm_d Results

- D^+_{lep} / SST:
 - $0.471 \pm 0.070 \pm 0.086 \pm 0.034$ ps
- D^+_{lep} / Q_{lep}:
 - $0.500 \pm 0.052 \pm 0.043$ ps
- e / μ:
 - $0.450 \pm 0.045 \pm 0.051$ ps
- μ / μ:
 - $0.503 \pm 0.064 \pm 0.071$ ps
- $D^+_{lep} / \Delta m_d$:
 - $0.516 \pm 0.099 \pm 0.023 \pm 0.035 \pm 0.035$ ps
- $D^+ / \Delta m_d$:
 - $0.562 \pm 0.068 \pm 0.041$ ps
- Average:
 - $0.495 \pm 0.026 \pm 0.025$ ps

W Mass Measurement

CDF(1B) Preliminary

$W \rightarrow ev$

$\chi^2/df = 82.6/70$ ($50 < M_T < 120$)

$\chi^2/df = 32.4/35$ ($65 < M_T < 100$)

$M_W = 80.473 \pm 0.065$ (stat) GeV

Backgrounds

KS(prob) = 16%

Top quark discovery (CDF&D0)

- 186.0 \pm 12.8 GeV/c2 Dilepton
- 176.1 \pm 7.4 GeV/c2 Lepton+jets
- 176.1 \pm 7.4 GeV/c2 Combined
- 186.4 \pm 12.8 GeV/c2 Dilepton
- 173.3 \pm 7.8 GeV/c2 Lepton+jets
- 172.3 \pm 7.1 GeV/c2 Combined

CDF preliminary

- HAD
- SVX
- SLT
- DIL
- Combined

Theory (4.7 - 5.9)

D0

- L+j (top)
- L+j (4.7)
- HAD
- Combined

SUSY02, DESY Hamburg

Carmine Elvezio Pagliarone
Run II Physics Highlights

- **Study Electroweak Symmetry Breaking**
 - Precision EW Measurements
 - Precise M_W measurement (10^7 (IIa) - 10^8 (IIb) events);
 - Better M_{top} measurement ($10k$ (IIa) - $75k$ (IIb) events - $\Delta M_{top} \approx 2-3$ GeV/c^2);
 - Better top Cross Section Measurement ($\Delta \sigma(tt) \approx 8\%$);
 - Investigation of the Top properties;
 - Direct Searches for EWSB mechanisms
 - the Standard Model Higgs
 - SUSY

- **Searches for New Phenomena**
 - SUSY;
 - Large Extra Dimensions;
 - QCD tests: probe distance scales below 1 milli fermi;

- **Study CP Violation and the CKM Matrix**
 - X_s Measurement (up to ~ 60);
 - $\sin 2\beta$ Measurement, $+\alpha, \gamma$
 - CP violation using $B \rightarrow J/\psi K_s^0$ ($B \rightarrow J/\psi K_S \rightarrow \mu\mu K_S$ 15k(IIa) - 100k (IIb))
 - CP violation using $B \rightarrow \pi^+ \pi^-$
 - Rare Decays: e.g. $B^+ \rightarrow \mu\mu K^+$
Beginning to look at Physics

• Electroweak:
 - $Z \rightarrow ee, \mu\mu$ Samples;
 - $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ Samples;
 - $W \rightarrow \tau\nu$ better samples from better τ-ID;

• Top Physics
 - First top candidates;
 - top in dilepton will be done first
 - No b-tag is necessary;
 - Smaller backgrounds.

• Bottom/Charm Physics
 - Reconstruction of B mesons;
 - Reconstruction of Charms
 - Beginning to develop analysis tools, look at rates
$Z \rightarrow e^+ e^-, \mu^+ \mu^-$ Candidates

CDF Run II Preliminary

Luminosity:
~ 8 pb$^{-1}$

Date:
2001.12.7
\sim 2002.3.2

231 Events

M_{ee} (GeV/c2)

CDF Preliminary

$Z \rightarrow \mu^+ \mu^-$

~ 6 pb$^{-1}$

$M_{\mu\mu}$ (GeV)

Central - Central
$Z \rightarrow e^+ e^-$ candidates

Central - Plug
$Z \rightarrow e^+ e^-$ candidates

Plug - Plug
$Z \rightarrow e^+ e^-$ candidates

SUSY02, DESY Hamburg

Carmine Elvezio Pagliarone
$W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ Candidates

- **Inclusive Electrons**
 - $W \rightarrow e\nu$ candidates
 - 1955 events
 - $(E_T > 20$ GeV, MET > 20 GeV)

 $\int L = 3.3$ pb$^{-1}$
 - December 2001-January 2002

- **E_T vs. MET of $W \rightarrow e\nu$ candidates**
 - Nent = 1955

- **Isolation Fraction vs. MET**
 - $W \rightarrow e\nu$ signal region
 - Isolation Fraction < 0.1
 - MET > 20 GeV

- **M_T of $W \rightarrow e\nu$ candidates**
 - Nent = 1955

 $\int L = 3.3$ pb$^{-1}$
 - December 2001-January 2002

- **$W \rightarrow \mu\nu$**
 - Stream A data
 - Nent = 349
 - Mean = 68.33
 - RMS = 14.46
 - MC data
 - Nent = 1678
 - Mean = 67.59
 - RMS = 13.19
$W \rightarrow \tau\nu$ Candidates

Very clean tau samples:

- Increased detector performances
- better tau ID algorithms:

SUSY02, DESY Hamburg

Carmine Elvezio Pagliarone
Top dielectron candidate

\[t\bar{t} \rightarrow e^+ e^- j^1 j^2 + E_{T} \]

- **Run= 136286 - Event= 54713**

\[E_{T}(e^+) = 73 \text{ GeV} \]
\[E_{T}(e^-) = 56 \text{ GeV} \]
\[\text{MET} = 43 \text{ GeV} \]
\[E_{T}(\text{jet}^1) = 35 \text{ GeV} \]
\[E_{T}(\text{jet}^2) = 34 \text{ GeV} \]

- **pass Run I dielectron Analysis cuts:**
- **Displaced vertex as expected from the b’s:**

\[e^+: E_{T}=73 \text{ GeV} \]
\[e^- : E_{T}=56 \text{ GeV} \]
\[\text{Jet1: } E_{T}=35 \text{ GeV} \]
\[\text{Jet2: } E_{T}=34 \text{ GeV} \]
\[\text{Missing Et } = 43 \text{ GeV} \]
\[\text{Mass (e-e+) } = 118 \text{ GeV} \]
A clear J/ψ signal:

- Improved J/ψ yield (factor 2-3 over Run I);
- **CMU or CMX Muons:**
 - Sample of 60,492 J/ψ;
 - cross section as expected (~9nb);
 - $\Gamma = 21.6 \pm 0.1$ MeV/c2;
 - $\Gamma \approx 16$ with SVX II;

First checks on physics:

- Inclusive B lifetime from J/ψ
 consistent with expectations:
 - $ct_B \sim 470$ mm (unbinned fit)
 - Systematics still out of control!
- **Prompt ψ fraction $\sim 85\%$**
 - Consistent with lower p_T cut relative to Run I;

CDF Run 2 Preliminary, 5 pb$^{-1}$, 27 Feb 2002

SUSY02, DESY Hamburg

Carmine Elvezio Pagliarone
First B_u, B_d, B_s signals

B^\pm Mesons ($L \approx 11 \text{ pb}^{-1}$)
- Selection cuts
 - $L_{xy} > 0$
 - $P_T(B) > 6.0 \text{ GeV/c}$
 - Vertex quality cuts

B_s Mesons ($L \approx 11 \text{ pb}^{-1}$)
- Selection cuts
 - $L_{xy} > 0$
 - $P_T(B) > 5.0 \text{ GeV/c}$
 - Vertex quality cuts
 - Mass window on Φ

SUSY02, DESY Hamburg

Carmine Elvezio Pagliarone
Side Effects: Lots of Charms from SVT...

CDF Run II preliminary

\[D^+, D_s \rightarrow \phi \pi, \phi \rightarrow KK \]

Num. events / 5 MeV

<table>
<thead>
<tr>
<th>Pi</th>
<th>1.80</th>
<th>1.85</th>
<th>1.90</th>
<th>1.95</th>
<th>2.00</th>
<th>2.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

Feb '02, Luminosity 1.05 pb\(^{-1}\)

CDF Run II preliminary (2/25/02)

\[D^+ \rightarrow KK \pi \pi \]

750 nb\(^{-1}\)

Feb/26/2002

\[D^0 \rightarrow KK \]

Events per 5 MeV/c\(^2\)

<table>
<thead>
<tr>
<th>Mass (GeV/c(^2))</th>
<th>1.75</th>
<th>1.80</th>
<th>1.85</th>
<th>1.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>400</td>
<td>300</td>
<td>200</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

CDF Run 2 Preliminary

E791 Focus

- Large charm yield
- Poor particle ID
- Trigger bias
- Prompt and secondary charm

Charm Studies in progress:

- Understanding best use of the sample
- Cross section
- Ratio of direct versus B produced
- Rare decays
- CP Violation

SUSY02, DESY Hamburg

Carmine Elvezio Pagliarone
TOF System Performance

- **110 ps of average resolution**
 (from preliminary calibration)
- **Getting close to 100 ps goal:**

SUSY02, DESY Hamburg

TOF + track informations

- $p(K^+)<1.5$ GeV/c (no PID)
 - $N(q) = 2354 \pm 325$
 - $N(bkg) = 93113$

- $p(K^+)<1.5$ GeV/c + PID
 - $N(q) = 1942 \pm 93$
 - $N(bkg) = 4517$

Cut on TOF info

- p, d, K, π
Conclusions

- **CDF Detector is working well:**
 - **Trigger:** All of L1, much of L2;
 - **Detector:** All major systems are working;
 - **Offline:** All major parts are working;

- **(still) Some concern because:**
 - Tevatron Collider Luminosity is still too low;
 - L00 is still working on pedestal problems;
 - SVX coverage is still not complete (for trigger performance)

- **Started to look at Physics**
 - Reconstruction of bottom/charm, investigation of tools (TOF, vertexing, etc)
 - W's, Z's, and top candidates

- **Luminosity Expectations**
 - Possibly 100-200 pb⁻¹ by end 2002, 2fb⁻¹ by 2004