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Motivation

Precision of a future linear collider extremely high!

) Requires adequate theoretical precision for SM and

MSSM processes:

e+e� ! 2 f : full O(�2) and leading higher-order corrections

e+e� ! 4 f : full O(�) and leading higher-order corrections

But: Consistent invariant regularization scheme for

supersymmetric theories missing!

Dimensional regularization:
't Hooft,Veltman'72

Breitenlohner,Maison'77

� fully consistent

� breaks supersymmetry, chiral symmetry

) symmetry identities can be consistently restored!

Dimensional reduction: Siegel'79

� inconsistent Siegel'80

� \practically working" and easy scheme at 1-loop level!

� no deeper understanding of symmetry violation!

When is SUSY or gauge-invariance violated?!

Remarks:

� symmetry violation by non-logarithmic contributions

) breaking terms are usually non-leading!

� symmetry violation at 1-loop disturb renormalizability at 2-loop
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Classical theory

Symmetries formulated in BRS form

sV� = D�c|{z}
local gauge

transf.

+ �
�
��� _�

��
_�
+ �

�
��� _���

_�| {z }
susy transformation

� i�
�
@�V�| {z }

translation

with ghost �elds c, ��, �
�.

Important property: nilpotency s2V� = 0

Classical action,vertex functional

�cl = �sym + �soft + �g:f:+ Yis�i

symmetric action,
no ghosts,
constructed from
super�elds

��
��

��
��

��
��1

soft susy breaking,
introduced via
external super�elds,
required for spont.
symmetry breaking

��
��
��
��*

gauge �xing and
ghost term,
has to respect
rigid gauge inv.,

= s

R
d4x(�cF )

�
�
�
��

external sources Y
for all non-linear
transforming BRS
transformations

6

Slavnov-Taylor (ST) operator:

S(�) =
X
linear

s�k
Æ�

Æ�k
+

X
non linear

Æ�

ÆYi|{z}
Æ�

Æ�i
= 0

= s�i +O(�h)
S(� + 
) = S(�) + S�|{z} 
 +O(
2)

=linearized ST operator
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Renormalization using a non-invariant

regularization scheme

General method:

� Calculate radiative corrections of order O(�hn):

� = �cl +
X
n

�
(n)

�(n) involve loops and invariant counterterms

� ST identity will be in general violated:

S(�) = �h
n
�+O(�hn+1

):

Quantum action principle: � is a local �eld polynomial

Example: � = 0 for dimensional regularization in QED
� = susy breaking terms for dimensional regularization in MSSM

� Search for a �̂ with

� = S�cl
�̂ + �h

n
riAi

and replace �! �� �̂

S(�) = �hnriAi +O(�hn+1);

Ai: possible anomalies

MSSM: susy Adler-Bardeen anomaly with ri = 0
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Nilpotency relations:

S
S(
) = 0 for all 
; ! S�cl
� = 0

S�cl
S�cl

= 0; ! S�cl
�̂ = 0

)Nilpotency relations restricts number of symmetry restoring

counterterms �̂ and breaking terms �!

MSSM: Nilpotency condition only ful�lled with

additional requirement �ct = �ct(�y
0

� � ���y0�)

with �0 =U(1)Y photino, y0� = external source of �0

In practise:

� Add to Feynman rules symmetry-restoring counterterms �̂

which

{ respect all symmetries respected by the regularization scheme

{ do not respect symmetries violated by the reg. scheme

MSSM: symmetry-restoring counterterms are all non-supersymmetric terms for dim. reg.

� Determine symmetry-restoring counterterms by ST identities:

ÆNS(�)
Æ�i1 � � � Æ�iN

�����
�!0

= 0

for all �eld monomials (�i1 � � ��iN) out of �.

{ (�i1 � � ��iN) can be a over-complete set including �

but need not respect S�cl
(�i1 � � ��iN) = 0

{ Set of linear equations can break down in sub-blocks

{ Approximations can be useful

In practise extremely complicated!
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Symmetry requirements of the MSSM

� ST identity: S(�) = 0

{ involves local gauge invariance, rigid susy, and

rigid translations in BRS form

� Ward operators: W� =
R
d4xÆ�i

Æ�
Æ�i

= 0

{ rigid SU(2)I gauge invariance

{ local U(1)Y gauge invariance
Bandelloni,Becchi,Blasi,Collina'78,

Kraus'98,Grassi'98

W 0

local� = 2(B0 + i��@��c
0)

) required to �x hypercharge in higher orders.

{ lepton and quark number conservation

{ continuous R symmetry

� Minimum requirement of Higgs potentialZ
d4x

Æ�

ÆHi(x)

����
�!0

= 0:

� Nilpotency requirement �ct = �ct(�
�y0�� � �� _��y

0

�
_�)

� Linear gauge-�xing condition Æ�
ÆB

= linear

� Translation-ghost equation Æ�
Æ��

= linear

� CP invariance
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Soft-supersymmetry breaking

Soft-supersymmetry breaking terms: Girardello,Grisaru'82

� Mass terms for scalar �elds: �M2
ij
��i�j

� Holomorphic bilinear and trilinear terms in scalar �elds:

�Bij�i�j � Aijk�i�j�k

� Mass terms for gauginos: M�
����� + c:c:

Soft-susy breaking via dimensionless super�eld (spurion):

Â = e�i��
���@�[A+

p
2��a� + �2(FA + vA)]

) Insert Â everywhere possible in �cl with new couplings!

) Generates all soft-supersymmetry breaking terms!

Example: gaugino mass term

Z
d6zÂF̂�F̂�

Â=�2vA�!
Z

d4x����

) Spurion can appear in�nite many times yielding
an in�nite number of coupling constants!

SUSY 2002, DESY, Hamburg 6



M. Roth, University of Karlsruhe June 22, 2002

Soft-supersymmetry breaking

Only couplings which survive forA; a� ! 0 are physically relevant:

Hollik,Kraus,St�ockinger'00

Two solutions of S(�1;2)jA;a�=0 = 0 are physical equivalent,

i.e. (�1 � �2)jA;a�;Y=0 = 0:

) Physical observables are not a�ected by renormalization

conditions for couplings to A; a�!

Choosing most easy solution: Piguet,Maggiore,Wolf'96

A = 0; a� =
p
2��A1; FA = A2

Â = e
�i�����@�[2�

�
��A1 + �

2
(A2 + vA)]

� Â appears only �nite times since Â2 = 0.

� u = A1; v = A2 + vA � i��@�A1 is BRS doublet:

su = v; sv = 0 ) � = �ju;v=0 + S�
~�(u; v)

) Symmetry-restoring counterterms do not depend on A1;2!

� A1 can appear without �� ) require � = �(��A1)

� MSSM becomes invariant under continuous R symmetry

New approach through non-renormalization theorems

) Further restriction on invariant counterterms!
Kraus,St�ockinger'01,'02

SUSY 2002, DESY, Hamburg 7



M. Roth, University of Karlsruhe June 22, 2002

Gauge �xing

Gauge-�xing has to maintain all symmetries!

Ansatz: (�+ = �� = �3)

�g:f: =

Z
d
4
x s

�
�c
a
F
a
+
1

2
�
a
�c
a
B
a

�
; a = +;�; 3; 0

with

F
a = @

�
V
a
� � [i(��a

1 + �va1)H1 + i(��a
2 + �va2)H2 + h:c:]:

For R� gauge, choose v
a
i such that

F
�
= @

�
W

�

� � iMW�
G�
G
�
;�

F 0

F 3

�
= RV

�
@�A�

@�Z� +MZ�ZG
0
G0

�
:

Remarks:

� Introduction of doublets vai to exclude physical Higgs from �g:f:

Reason: di�erent �eld renormalization of Hi

� Rigid gauge invariance by proper choice of Ægauge�a
i

� Introduce external �elds 	a
i which form BRS doublet with �a

i

� �0i+�v0i; �̂ = 2T a(�a
i +�vai ) mix with the physical Higgs �elds

) �a
i ;	

a
i can be ignored for rigid gauge-invariant

regularization schemes!
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Invariant counterterms

Genuine invariant counterterms:

�ct;inv = �ct;inv;1| {z }
.

+�ct;inv;2| {z }
&

�ct;inv;1 = (Æg Æ
Æg
+ : : :)�cl �ct;inv;2 = S�cl

�̂ct;inv;2

renormalization of:

- gauge couplings g; g0 - couplings to BRS doublets:

- Yukawa couplings fR; fU ; fD - soft susy breaking parameters

- �-parameter - gauge-�xing parameters

- Fayet-Iliopoulos term v0 - �a
i parameters

- renormalization of - �eld renormalization of

linear transf. �eld V 0� non-linear transf. �elds
1
2Æz�S�cl

R
d4xY��

Remarks:

� Genuine invariant counterterms do not appear in Ward and ST

operators

� Renormalization of V 0�; g
0; �0; : : : connected due to local U(1)Y

Ward identity
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Finite �eld reparametrizations:

�(�symi ) = �(Rij�
phys
j ):

� only �elds with same quantum numbers mix

� appear in Ward and ST operators explicitely

� important to ful�l on-shell renormalization conditions

� partially redundant to genuine invariant counterterms

� required for infrared power-counting renormalizability

Example: 
V 0�

V 3
�

!
=

� p
zV 0 0

0
p
zV

�
| {z }
genuine invariant

counterterms

divergent

�
(RV )11 (RV )12
(RV )21 (RV )22

�
| {z }
�eld reparametrization

�nite

�
A�

Z�

�

SUSY 2002, DESY, Hamburg 10



M. Roth, University of Karlsruhe June 22, 2002

Infrared �niteness

Power-counting renormalizability explicitely proven!
( Proof done in BPHZL scheme)

Requirements by IR power-counting:

�A�Z� jp2=0 = �cA�cZ jp2=0 = �cZ�cAjp2=0 = 0 (1)

�A�A�jp2=0 = �cA�cAjp2=0 = 0 (2)

A�

A�A�

) vertices � = �A�A�jp2=0 6= 0
yield infrared problem!

) Non-invariant counterterms A�A�, A
�Z�, cZ�cA,

cA�cZ, cA�cA are already �xed by symmetries!

BPHZL scheme: forbidden counterterms

� Demixing requirements (1) established by �eld reparametrization:�
(ÆRV )ZAA�

Æ

ÆZ�

+ (ÆRV )ZZZ�

Æ

ÆZ�

�
1

2

�
M

2
ZZ

�
Z�

�
= (ÆRV )ZAM

2
ZA

�
Z� + (ÆRV )ZZM

2
ZZ

�
Z�:

Kraus'98

) ÆRV appears in ST and Ward operators explicitely

� Requirements (2) ful�lled as a consequence of the ST identity

and the demixing requirements (1).
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On-shell renormalization scheme

On-shell renormalization scheme (schematically):

� Mass conditions: Re��i�ijp2=m2
i
= 0

� Demixing conditions: Re��i�j jp2=m2
i
= 0; i 6= j

� Residuum conditions: Re@p2��i�ijp2=m2
i
= 1

) On-shell conditions very similar to the once
of the Standard Model.

Remarks:

� Several masses determined by mass relation and not by

renormalization conditions!

E.g. masses of H0; h0; H�; �0
2;3;4;

~d2;~e2 are not free

parameters.

Masses in propagators ful�l only lowest-order mass relations!

� Demixing possible only up to �nite decay widths!

Known problems related to unstable particles.

Unstable particles do not appear in asymptotic states.
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Summary and Outlook

Summary:

� Renormalization of the MSSM in a scheme independent way

� Soft-supersymmetry breaking parameter via external �elds

� Rigid gauge-invariant gauge-�xing term

� Complete and consistent set of symmetry identities

� Complete set of invariant counterterms

� Infrared �niteness of the theory explicitely proven

� Consistent set of renormalization conditions

Outlook:

� Restoration of symmetry identities in practice

) Introduction of symmetry-restoring counterterms
I. Fischer,D. St�ockinger, M. R.

� Apply non-renormalization theorems to MSSM

) Deeper understanding of invariant counterterms in MSSM
E. Kraus, M. R.
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