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Abstract:
The renormalization of the Minimal Supersymmetric Standard Model is discussed. In

particular we focus on the soft supersymmetry breaking sector of the MSSM and comment
on non-renormalization theorems.

Introduction

The Minimal Supersymmetric Standard Model (MSSM) [1] is certainly the best mo-
tivated and conceptually most elaborated extension of the Standard Model (SM). Both
models can be studied with very high precision at future e+e− colliders [2]. To account for
the high experimental accuracy the full O(α) corrections for most particle reactions and
even the full O(α2) in specific cases have to be included into the theoretical predictions.

However in supersymmetric theories like the MSSM, no regularization method is known
which is mathematically consistent (that obeys the quantum action principle) and pre-
serves all symmetries. Particularly dimensional regularization, which is mathematically
consistent in the form of Ref. [3], violates supersymmetry and chiral symmetry. For con-
sistency such symmetry breakings have to be restored by adding suitable (non-invariant)
counterterms whose values are determined by the algebraic method. On the other hand
dimensional reduction [5] which is often used in phenomenological applications suffers
from the fact that it is mathematically not well defined [6]. Explicit examples of incon-
sistencies are known at the three-loop level [7] and, best to our knowledge, even at one
loop it is not yet completely proven that dimensional reduction conserves all symmetries.

The restoration of symmetries is in practise an extremely complicated and time con-
suming work [4]. From the abstract point of view, the Slavnov-Taylor (ST) identity can
be broken in the procedure of renormalization

S(Γ) = ∆. (1)

Owing to the quantum action principle, ∆ consists of local field polynomials with dimen-
sion D ≤ 4 and Faddeev-Popov charge QΦΠ = 1 (see e.g. Ref. [8] for details) satisfying
the equation

SΓ∆ = 0. (2)
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If the cohomology problem
SΓ∆̂ = ∆ (3)

can be solved, the theory is free of anomalies and the ST identity can be restored by
adding the symmetry-restoring counterterms −∆̂ to the vertex function Γ:

S(Γ− ∆̂) = S(Γ)− SΓ∆̂ = ∆− SΓ∆̂ = 0. (4)

In case of the MSSM the algebraic analysis, which is the necessary prerequisite for
the application in explicit calculations, has been worked out in Ref. [8]. All symmetry
requirements that have to be respected to all orders in perturbation theory have been
explicitly given. Furthermore, the symmetric counterterms of the MSSM have been sys-
tematically constructed, a complete set renormalization conditions has been defined, and
infrared finiteness has been proven by power-counting arguments.

In the following we want to concentrate on the soft supersymmetry breaking part of
the MSSM and briefly discuss non-renormalization theorems at the end.

Soft supersymmetry breaking

In realistic models like the MSSM supersymmetry has to be broken owing to the
large mass difference between SM particles and their superpartners and to trigger the
spontaneous breakdown of the SU(2)×U(1) gauge group. However in a quantum theory
even a (softly) broken supersymmetry has to be maintained in a mathematically consistent
way in higher orders. In order to fomulate symmetry identities that take into account
soft supersymmetry breaking we couple the soft symmetry breaking part of the MSSM to
external fields that possess finite vacuum expectation values. Two kinds of external fields
are used in the literature.

In Ref. [9] a BRS doublet u, v has been used, where the field v has a finite vacuum
expecation value vA, and the field u is a Faddeev-Popov ghost. The special form of the
BRS transformation law of BRS doublets

su = v, sv = 0 (5)

accounts for some extraordinary properties (see e.g. Ref. [10]):

• BRS doublets do not contribute to anomalies of the ST identity.

• Their contribution to the action can be written as BRS variations that fulfil the ST
identity due to the nilpotency of the ST operator. The action and ST identity can
be decomposed as follows (see e.g. Ref. [10]):

Γ = Γ|u,v=0 +
∫

d4x v
δ

δu
∆̃(u, v), (6)

S(Γ) = S0(Γ) +
∫

d4x v
δ

δu
Γ. (7)

If we assume that the ST identity for u, v = 0 is already solved

S(Γ|u,v=0) = 0, (8)
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and if we add the symmetry-restoring counterterm S0
Γ∆̃(u, v) to the action:

Γ → Γ = Γ|u,v=0 + S0
Γ∆̃(u, v) +

∫
d4x v

δ

δu
∆̃ = Γ|u,v=0 + SΓ∆̃(u, v), (9)

the full ST identity is fulfilled:
S(Γ) = 0. (10)

Owing to the nilpotency of the ST operator, ∆̃(u, v) does not contribute to the ST
identity at all. Thus, the cohomology problem of the soft supersymmetry breaking part
of the MSSM is trivial. In the doublet approach, however, it is not possible to distinguish
physical soft breakings from unphysical breakings. Indeed, in Ref. [10] an additional R
symmetry has to be used to exclude the soft breaking of gauge symmetry as for example
a gauge boson mass. Then one remains with a restricted class of soft breaking terms,
which again include unphysical as well as physical parameters. Those couplings that
contribute to soft supersymmetry breaking terms are clearly important for the calculation
of observables since they are (at least partly) determined by the renormalization condition
of physical mass parameters. All other couplings are unphysical in the sense that their
renormalization conditions do not effect physical observables. These unphysical couplings
can be savely neglected.1

In a second approach [8,11,12] the soft supersymmetry breaking terms are generated
from a massless external chiral superfield called spurion

Â = e−iθσµθ̄∂µ

[
A +

√
2θαaα + θ2(FA + vA)

]
, (11)

where the θ2 component has an finite real vacuum expectation value vA. In this way all
soft supersymmetry breaking terms of the MSSM are generated. For instance, the gaugino
mass originates from (see Ref. [8] for notations)

− 1

128g′2

∫
d6z ÂF̂ ′αF̂ ′

α =
vA

2

∫
d4xλ′αλ′

α + spurion terms. (12)

Since the spurion is dimensionless it can appear in arbitrary powers Ân in the effective
action yielding an infinite number of new coupling constants and counterterms and, hence,
it is not clear if such a theory is predictive at all. However it has been show in Ref. [12]
that indeed only a small number of the spurion couplings are physically relevant and
contribute in the limit of vanishing spurion fields.

In the following we want to show that the renormalization of the spurion part of the
MSSM is trivial and can be traced back to the case of two BRS doublets. The spurion
superfield obeys the following BRS transformations:

sA =
√
2εαaα − iξµ∂µA, (13)

saα =
√
2εα(FA + vA) + i

√
2σµ

αα̇ε̄α̇∂µA − iξµ∂µaα, (14)

sFA = i
√
2∂µaασµ

αα̇ε̄α̇ − iξµ∂µFA. (15)

1It should be noted that both the symmetry breaking ∆ and the symmetry-restoring counterterm ∆̂
involve in general all kinds of couplings related to u, v, but in a regularization-scheme dependent way.
Therefore, this dependence is purely artificial and does not effect physical observables.
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If we decompose the Weyl spinor aα into two auxiliary fields a1, a2 according to

aα =
√
2
(
iσµ

αα̇ε̄α̇∂µa1 + εαa2

)
, (16)

we obtain the following BRS transformations:

sa1 = A − iξµ∂µa1, sA = 2iεασµ
αα̇ε̄α̇∂µa1 − iξµ∂µA,

sa2 = FA + vA − iξµ∂µa2, sFA = 2iεασµ
αα̇ε̄α̇∂µa2 − iξµ∂µFA.

(17)

We identify the two BRS doublets u, v and U, V by

U = a1, V = A − iξµ∂µa1,
u = a2, v = FA + vA − iξµ∂µa2, (18)

which respect the usual BRS transformation law for BRS doublets. The fields u, v corre-
spond exactly to the BRS doublet of Ref. [9]. The additional fields U, V are dimensionless
and can appear infinite many times in the action.

In order to retain the superfield character of the original spurion field we have to
require in addition that u, U has to appear in the action only in the combination (16).
This implies in particular that Γ depends only on the combination uεα. In the approach
of Ref. [9] such a requirement is missing and even with R symmetry additional interaction
terms are present which to not fit in the superfield formulation.

As a result, all spurion terms are BRS variations. The physical relevant terms can be
found in Appendix E of Ref. [8]. They have a one-to-one correspondence to the terms in
the superfield notation (see equation (2.18) of Ref. [8]). For instance the gaugino mass of
(12) corresponds to

SΓ

∫
d4x [uλ′αλ′

α] . (19)

Hence the cohomology problem of the spurion part of the MSSM is as trivial as in the
case of the BRS doublet of Ref. [9]. Particularly only terms up to second order in the
spurion field contribute to soft supersymmetry breaking terms and are important for the
calculation of physical observables. All other spurion terms can be savely ignored.

The main difference between the formulation with BRS doublets u, v and U, V and
those with the spurion superfield Â is the actual form of the ST operator. In the formu-
lation with BRS doublets the ST operator reads

S(Γ) = S0(Γ) +
∫

d4x

(
V

δ

δU
+ v

δ

δu
+ c.c.

)
, (20)

while in the superfield notation it yields

S(Γ) = S0(Γ) +
∫

d4x

(
sA

δ

δA
+ saα δ

δaα
+ sFA

δ

δFA
+ c.c.

)
. (21)

For practical purposes it can be more convenient to stay within the superfield notation.
In this case it is sufficient to solve the ST identity in the limit A, aα → 0:

S(Γ)|A,aα=0 = 0. (22)
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In addition one has then to use the R Ward identity

(
WRΓ

)∣∣∣
A,aα=0

=
(
WRΓ

)∣∣∣
A,aα,FA=0

−
∫

d4x

(
2iFA

δΓ

δFA

+ c.c.

)∣∣∣∣∣
A,aα=0

= 0, (23)

yielding a relation between vertex functions including FA fields and those without spurion
fields.

Non-renormalization theorems

From superspace calculations [13] and renormalization group arguments [14] it has
been known that soft supersymmetry breakings have special renormalization properties:
Up to some D-term contributions it is possible to express divergences of soft breaking
parameters in terms of renormalization constants of the couplings and supersymmetric
masses. These improved renormalization properties escape the doublet approach as well
as the spurion approach.

Recently the non-renormalization theorems of supersymmetric field theories have been
proven in the Wess-Zumino gauge by extending coupling constants to external fields and
including softly broken axial symmetry as an additional defining symmetry into the model
[15]. The extended model already contains the soft breaking parameters and yields the
relations between the renormalization constants of supersymmetric parameters and of soft
breaking parameters [16]. In addition, the algebraic derivation exhibits a deep relation
between two anomalies — the axial anomaly and a supersymmetry anomaly — and the
explicit form of the non-renormalization theorems.

However, in this approach the symmetries and in particular the ST identity have a
more complicated form as in the spurion and doublet approach. Hence, one could use the
simpler formulation with spurion fields for practical calculations and take the information
on the renormalization constants obtained from the abstract approach in the extended
model as an additional input and check of explicit calculations.
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