
Renormalization Group Analysis of Neutrino Mass
Parameters1

Stefan Antusch2

Physik-Department T30, Technische Universität München
James-Franck-Straße,85748 Garching, Germany

Abstract

Tools for calculating the Renormalization Group Equations for renormalizable and
non-renormalizable operators in various theories are reviewed, which are essential for
comparing experimental results with predictions from models beyond the Standard
Model. Numerical examples for the running of the lepton mixing angles in models
with non-degenerate see-saw scales are shown, in which the best-fit values of the
experimentally favored LMA solution are produced from maximal or from vanishing
solar neutrino mixing at the GUT scale.

1 Introduction

Models for neutrino masses typically operate at high energy scales, like the GUT scale.
However from the experiments we obtain information about the low energy values of the
parameters. To compare them, it is essential to evolve the parameters of the models
from high to low energies. This is accomplished by the Renormalization Group Equations
(RGE’s) for the operators of the theory. When the Standard Model (SM) or the MSSM is
viewed as an effective field theory, Majorana masses for the neutrinos can be introduced
via an effective operator of mass dimension 5, which couples 2 lepton and 2 Higgs doublets.
The most promising scenarios for giving masses to neutrinos use the see-saw mechanism,
which provides a convincing explanation for their smallness. It can be realized by a
renormalizable theory with the particle content of the SM or the MSSM extended by 3
heavy neutrinos that are singlets under the SM gauge groups. The singlets typically have
large explicit (Majorana) masses with a spectrum, which is non-degenerate in general.
Due to this non-degeneracy one has to use several effective theories with the singlets
partly integrated out, when studying the evolution of the effective mass matrix of the
light neutrinos. We review the tools necessary to perform the Renormalization Group
analysis of the neutrino mass parameters in various models. Numerical solutions to the
RGE’s show that there can be large effects for the running of the lepton mixing angles,
especially for the solar angle θ12. The currently favored LMA solution of the solar neutrino
problem can e.g. be obtained in a natural way from bimaximal mixing [1] as well as from
θ12 = θ13 = 0◦, θ23 = 45◦ [2] at the GUT scale by renormalization group effects.

1Based on collaborations with Manuel Drees, Jörn Kersten, Manfred Lindner, and Michael Ratz.
2E-mail: santusch@ph.tum.de
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2 The Neutrino Mass Operator in the SM and in the MSSM

Let �fL, f ∈ {1, 2, 3}, be the SU(2)L-doublets of SM leptons and φ the Higgs doublet. The
dimension 5 operator, which gives Majorana masses to the SM neutrinos after electroweak
(EW) symmetry breaking (figure 1), is given by
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κ is symmetric under interchange of the generation indices f and g, ε is the totally
antisymmetric tensor in 2 dimensions, and �CL := (�L)

C is the charge conjugate of the
lepton doublet. a, b, c, d ∈ {1, 2} are SU(2) indices. The corresponding expression in the
MSSM is the F -term of the part of the superpotential
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where the chiral superfield l contains the lepton SU(2)L-doublets and h
(2) contains the

Higgs doublet with weak hypercharge +1
2
.
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Figure 1: Vertex from the dimension 5 operator, which yields a Majorana mass matrix for the light
neutrinos.

3 Calculating β-Functions from Counterterms in MS-like Schemes

We are interested in the β-function βQ := µdQ
dµ

for a quantity Q in an MS-like renormal-
ization scheme. In general, the bare and the renormalized quantity are related by

QB =

(∏
i∈I

Zni
φi

)
[Q+ δQ]µDQε

(∏
j∈J

Z
nj

φj

)
, (3)

where I = {1, . . . ,M}, J = {M + 1, . . . , N}, DQ is related to the mass dimension of
Q, µ is the renormalization scale and ε := 4 − d stems from dimensional regularization.
δQ, which corresponds to the counterterm for Q, and the wavefunction renormalization
constants Z depend on Q and some additional variables {VA}. From equation (3), we
obtain [3]

βQ =
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with
〈

dF
dx

y
〉
defined as dF

dx
y for scalars,

∑
n

dF
dxn

yn for vectors,
∑

m,n
dF

dxmn
ymn for matrices

and analog for arbitrary tensors x, y. The formula (4) can be used for any tensorial
quantity Q. Due to the general form of the counterterm in equation (3), it can also be
used for non-multiplicative renormalization.

4 The β-Function for the Neutrino Mass Operator in the SM and
in 2HDM’s

Calculating the counterterm for the neutrino mass operator and the wavefunction renor-
malization constants in the SM, we obtain for the β-function of the neutrino mass operator
from equation (4) [3]

16π2βκ = −3

2

[
κ
(
Y †

e Ye

)
+
(
Y †

e Ye

)T
κ
]
+

+λκ− 3g2
2κ+ 2Tr

(
3Y †

uYu + 3Y †
d Yd + Y †

e Ye

)
κ . (5)

g2 is the SU(2) gauge coupling constant, Yu and Yd are the Yukawa matrices for the up
and the down quarks, Ye is the Yukawa matrix for the charged leptons and λ is the Higgs
self-coupling. Compared to earlier results [4,5], in [3] we find a coefficient −3

2
instead of

−1
2
in front of the non-diagonal term κ(Y †

e Ye)+ (Y †
e Ye)

Tκ (see figure 2), which is essential
for the running of the lepton mixing angles. Similar corrections have also been made in
the RGE’s for the neutrino mass operators in Two Higgs Doublet Models (2HDM’s) [6].
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Figure 2: Diagrams for the 1-loop vertex renormalization of the neutrino mass operator in the SM, which
yield contributions to the β-function with a non-trivial flavour structure. The gray arrow indicates the
fermion flow as defined in [7].

5 Supergraph Construction Kit for 2-Loop β-Functions in the
MSSM

The calculation of β-functions is simplified considerably in supersymmetric (SUSY) theo-
ries, since due to the non-renormalization theorem [8,9] only wavefunction renormalization
has to be considered for operators of the superpotential. However, in a component field
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description, no use can be made of the theorem with respect to gauge loop corrections
since it is no longer manifest when a supergauge, as for example Wess-Zumino-gauge,
has been fixed. The supergraph technique [10–13], on the other hand, allows to use the
non-renormalization theorem since SUSY is kept manifest. It can thus be used to cal-
culate β-functions in supersymmetric theories for operators of the superpotential from
the wavefunction renormalization constants. These operators may be non-renormalizable
since for the latter the non-renormalization theorem holds as well [14] and they do not
affect the wavefunction renormalization constants in leading order in an effective field
theory expansion. For the wavefunction renormalization constants, general formulae exist
in the literature. Thus one can formulate a construction kit for calculating 2-loop beta
functions in N =1 supersymmetric theories, which can be applied to renormalizable and
non-renormalizable operators of the superpotential [15]. We applied it to calculate the
2-loop beta functions for the lowest-dimensional effective neutrino mass operator in the
MSSM and for the Yukawa couplings (including Yν) in the MSSM extended by singlet
superfields and the Majorana mass matrix M for the latter.

6 The 2-Loop β-Function for the Neutrino Mass Operator in the
MSSM

The calculation of the 1-loop part of the RGE for the neutrino mass operator in the MSSM
yields

(4π)2β(1)
κ

MSSM
= (Y †

e Ye)
Tκ+ κ(Y †

e Ye) + 6Tr(Y †
uYu) κ− 2g2

1κ− 6g2
2κ , (6)

confirming the existing MSSM result [4,5]. Using the construction kit, from the super-
graph diagrams shown in figure 3, for the 2-loop part we obtain [15]
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7 Generating the LMA solution by RG Running of the Lepton
Mixing Angles

To study the RG running of the lepton mixing angles and neutrino masses, all parameters
of the theory have to be evolved from the GUT scale to the EW scale. Starting at the GUT
scale, the strategy is to successively solve the systems of coupled differential equations of
the form

µ
d

dµ

(n)

Xi =
(n)

βXi

({
(n)

Xj

})
(8)
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Figure 3: 2-loop supergraphs, which contribute to the �� propagator. Chiral superfields are represented
as straight double lines while vector-superfields are indicated by wiggly double lines. A blob denotes the
relevant one-particle irreducible graph including any 1-loop counterterm that may be required [16].

for all the parameters
(n)

Xi ∈
{

(n)

κ,
(n)

Yν ,
(n)

M, . . .
}
of the theory. The parameters defined in the

energy ranges corresponding to the various effective theories are marked by (n). The
derivation of the RGE’s for the theories in the ranges between the see-saw scales, where
the heavy singles are partly integrated out, and the method for dealing with these effective
theories are given in [17].

The LMA solution of the solar neutrino problem with a large but non-maximal value
of the solar mixing angle θ12 is strongly favored by the experiments. The best-fit values
are ≈ 33◦ for θ12 [18–21], 45◦ for θ23 [22], while for θ13 at 2σ there is an upper bound
of ≈ 9◦ [23]. For model builders, especially the desired solar angle is difficult to achieve.
This raises the question, whether the LMA solution might be reached by RG evolution
if one starts with bimaximal lepton mixing or with vanishing solar mixing (and θ13 =
0◦, θ23 = 45◦) at the GUT scale. Figure 4 shows examples for the RG evolution of the
lepton mixing angles, where this has been accomplished [1,2].

8 Conclusions

The Renormalization Group analysis of the neutrino mass parameters and lepton mixing
angles provides a crucial tool towards understanding the physics at high energy scales3.

3A list of references to the large number of studies, which have investigated this subject, can e.g. be
found in [1].
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Figure 4: Examples for the RG evolution of the lepton mixing angles from the GUT scale to the SUSY-
breaking scale (taken to be ≈ 1 TeV) in the MSSM extended by 3 heavy singlets (right-handed neutrinos).
We assumed zero CP phases and positive mass eigenvalues for the neutrinos. The best-fit values for the
mixing angles of the LMA solution can be obtained from bimaximal lepton mixing [1] (figure 4(a)) as well
as from vanishing solar mixing angle at the GUT scale [2] (figure 4(b)). The kinks in the plots correspond
to the mass thresholds at the see-saw scales, where the heavy singlets are successively integrated out.
The grey-shaded regions mark the various effective theories between the see-saw scales.

The necessary RGE’s in see-saw scenarios for neutrino masses have been derived for the
various effective theories between the GUT scale and the low scale. For the energy ranges
between the see-saw scales, the RGE’s have been derived in [17]. The RGE’s in the MSSM
are known up to the 2-loop level [15]. This accuracy may be needed for the neutrino sector
since due to the absence of hadronic uncertainties, high precision measurements of the
neutrino parameters may be achieved in future experiments. The RGE for the neutrino
mass operator at the 1-loop level has been derived in [4,5,3] for the SM, in [5,6] for Two
Higgs Doublet Models and in [4–6] for the MSSM. Numerical calculations show that large
RG evolution of the lepton mixing angles can particularly take place in the energy ranges
between and above the see-saw scales. The best-fit values for the mixing angles of the
LMA solution can be obtained from bimaximal lepton mixing [1] as well as from single
maximal mixing with a vanishing solar mixing angle [2] at the GUT scale.
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