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We consider Bs → µ+µ− and the muon (g − 2)µ in various SUSY breaking me-

diation mechanisms. If the decay Bs → µ+µ− is observed at Tevatron Run II with

a branching ratio larger than ∼ 2 × 10−8, the noscale supergravity (including the

gaugino mediation), the gauge mediation scenario with small number of messenger

fields and low messenger scale, and a class of anomaly mediation scenarios will be ex-

cluded, even if they can accommodate a large muon (g−2)µ. On the other hand, the
minimal supergravity scenario and similar mechanisms derived from string models

can accommodate this observation.

The minimal supersymmetric standard model (MSSM) is one of the leading candidates

for the physics beyond the standard model (SM). Its detailed phenomenology depends on

soft SUSY breaking terms which contain 105 new parameters compared to the SM. There

are some interesting suggestions that have been put forward over the last two decades:

gravity mediation (SUGRA), gauge mediation (GMSB), anomaly mediation (AMSB),

and gaugino mediation (g̃MSB), etc.. Each mechanism predicts specific forms of soft

SUSY breaking parameters at some messenger scale. It is most important to determine

the soft parameters from various different experiments, and compare the resulting soft

SUSY breaking parameters with those predicted in the aforementioned SUSY breaking

mediation mechanisms. This process will provide invaluable informations on the origin

of SUSY breaking, which may be intrinsically rooted in very high energy regimes such as

intermediate, GUT or Planck scales.

Direct productions of SUSY particles and measuring their properties are indispensable

for this purpose. However, indirect searches such as FCNC and/or CP violating processes,

can be complementary to the direct search.

We considered the low energy processes (g − 2)µ, B → Xsγ and Bs → µ+µ− for

theoretically well motivated SUSY breaking mediation mechanisms [1]: no scale scenario
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[2] including g̃MSB [3], GMSB [4] and the minimal AMSB [5] and some of variations [6–8].

It turns out there are qualitative differences among some correlations for different SUSY

breaking mediation mechanisms [1, 9]. Especially the branching ratio for Bs → µ+µ−

turns out sensitive to the SUSY breaking mediation mechanisms, irrespective of the muon

anomalous magnetic moment aSUSY
µ as long as 10 × 10−10 � aSUSY

µ � 40 × 10−10. If

Bs → µ+µ− is observed at Tevatron Run II with a branching ratio larger than ∼ 2×10−8,

the GMSB with a small number of messenger fields with low messenger scale and a class

of AMSB scenarios will be excluded. Only supergravity or GMSB with high messenger

scale and large number of messenger fields and the deflected AMSB would survive.

The SUSY contributions to aµ come from the chargino-sneutrino and the neutralino-

smuon loop, the former of which is dominant in most parameter space. In particular,

µ > 0 implies aSUSY
µ > 0 in our convention. The deviation between the new BNL data

[10] and the most recently updated SM prediction[11] based on the σ(e+e− → hadrons)

data is (33.9 ± 11.2) × 10−10.On the other hand, the deviation becomes smaller if the

hadronic tau decays are used. Therefore, we do not use aµ as a constraint except for

aµ > 0, and give predictions for it in this letter.

It has long been known that the B → Xsγ branching ratio puts a severe constraint

on many new physics scenarios including weak scale SUSY models. The magnetic dipole

coefficient C7γ for this decay gets contributions from SM, charged Higgs and SUSY parti-

cles in the loop. The charged Higgs contributions always add up to the SM contributions,

thereby increasing the rate. On the other hand, the last (mainly by the stop - chargino

loop) can interfere with the SM and the charged Higgs contributions either in a construc-

tive or destructive manner depending on the sign of µMg̃. Note that the positive aSUSY
µ

picks up µ > 0 (for M2 > 0) in our convention. Fortunately, this results in destructive

interference of the stop-chargino loop with the SM and the charged Higgs contribution in

B → Xsγ decay, in all the models considered except the AMSB scenario. In the AMSB

scenario, the constructive interference between the stop-chargino loop and the SM con-

tributions to B → Xsγ, increases the rate even more. Therefore the AMSB scenario is

strongly constrained if aSUSY
µ > 0.

Another important effect is the nonholomorphic SUSY QCD corrections to the hbb̄

couplings in the large tanβ limit: the Hall-Rattazzi-Sarid (HRS) effect [12]. Also, the

stop - chargino loop could be quite important for large At and yt couplings. One can

summarize these effects as the following relation between the bottom quark mass and the

bottom Yukawa coupling yb:

mb = yb

√
2MW cos β

g
(1 + ∆b) (1)

where the explicit form of ∆b can be found in Ref. [13]. In the large tan β limit, the SUSY

loop correction ∆b which is proportional to µMg̃ tanβ can be large as well with either
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sign, depending on the signs of the µ parameter and the gluino mass parameter Mg̃. In

particular, the bottom Yukawa coupling yb becomes too large and nonperturbative, when

µ > 0 in the AMSB scenario, since the sign of ∆b would be negative. This puts additional

constraint on tanβ � 35 for the positive µ in the AMSB scenario.

The decay Bs → µ+µ− has a very small branching ratio in the SM ((3.7 ± 1.2) ×
10−9)[14]. But it can occur with much higher branching ratio in SUSY models when

tan β is large, because the Higgs exchange contributions can be significant for large tanβ

[15][16]. The branching ratio for Bs → µ+µ− is proportional to tan6 β for large tan β.

Thus this decay may be observable at the Tevatron Run II down to the level of 2× 10−8,

and could be complementary to the direct search for SUSY particles at the Tevatron Run

II in the large tanβ region.

In the following, we consider three aforementioned SUSY breaking mediation mech-

anisms. Each scenario gives definite predictions for the soft terms at some messenger

scale. We use renormalization group equations in order to get soft parameters at the elec-

troweak scale, impose the radiative electroweak symmetry breaking (REWSB) condition

and then obtain particle spectra and mixing angles. Then we impose the direct search

limits on Higgs and SUSY particles [1]. Also we impose the B → Xsγ branching ratio as a

constraint with a conservative bound (at 95 % C.L.) considering theoretical uncertainties

related with QCD corrections: 2.0× 10−4 < B(B → Xsγ) < 4.5× 10−4 [17].

The correlation between aSUSY
µ and Bs → µ+µ− were recently studied in the minimal

SUGRA scenario [16][18]. The result is that the positive large aSUSY
µ implies that B(Bs →

µ+µ−) can be enhanced by a few orders of magnitude compared to the SM prediction, and

can be reached at the Tevatron Run II. The g̃MSB scenario, which finds a natural setting

in the brane world scenarios, leads to the no-scale SUGRA type boundary condition for

soft parameters, in which scalar mass and trilinear scalar terms all vanish at GUT scale,

B = m2
ij = Aijk = 0 and only gaugino masses are non-vanishing. The result is shown

in Fig. 1(a). Assuming the gaugino mass unification at GUT scale, we find that overall

phenomenology of g̃MSB scenario (and the noscale scenario) in the aSUSY
µ and Bs → µ+µ−

is similar to the mSUGRA scenario (see Ref. [20] for details including B → Xsl
+l−). In

the allowed parameter space, the aSUSY
µ can easily become upto ∼ 60 × 10−10. But the

branching ratio for Bs → µ+µ− is always smaller than 2×10−8 and becomes unobservable

at the Tevatron Run II. The reason is that the large tanβ region, where the branching

ratio for Bs → µ+µ− can be much enhanced, is significantly constrained by stau or smuon

mass bounds and the lower bound of B → Xsγ. Therefore if the aSUSY
µ turns out to be

positive and the decay Bs → µ+µ− is observed at the Tevatron Run II, the g̃MSB scenario

would be excluded.

The ‘pure’ AMSB model has the tachyonic slepton problem. For phenomenologi-

cal study we take the ‘minimal’ AMSB model which has additional universal scalar

mass m2
0 at the GUT scale [19]. It is specified by the following four parameters :
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FIG. 1: The contour plots for aSUSY
µ in unit of 10−10 (in the blue short dashed curves), the

lightest neutral Higgs mass (in the black dash-dotted curves) and the Br (Bs → µ+µ−) (in the

red solid curves) for (a) the g̃MSB scenario, (b) the AMSB scenario for Maux = 50 TeV. The

dark regions are excluded by the bounds from direct searches.

tan β, sign(µ), m0, Maux.

In Fig. 1(b), we show the contour plots for the aSUSY
µ and B(Bs → µ+µ−) in the

(m0, tanβ) plane for Maux = 50 TeV. In the case of the AMSB scenario with µ > 0,

the B → Xsγ constraint is even stronger compared to other scenarios and almost all

the parameter space with large tanβ > 30 is excluded. Therefore the branching ratio

for Bs → µ+µ− is smaller than 4 × 10−9, and this process becomes unobservable at the

Tevatron Run II. If the decay Bs → µ+µ− is observed at the Tevatron Run II, the minimal

AMSB scenario would be excluded.

GMSB scenarios are specified by the following set of parameters: M , N , Λ, tan β and

sign(µ), where N is the number of messenger superfields, M is the messenger scale, and

the Λ is SUSY breaking scale, Λ ≈ 〈FX〉/〈X〉. In Fig. 2(a), we show the contour plots for

the aSUSY
µ , mh0 , and B(Bs → µ+µ−) with N = 1 and M = 106 GeV. For low messenger

scale, the charged Higgs and stops are heavy and their effects on the B → Xsγ and

Bs → µ+µ− are small. And the At is small since it can generated by only RG running, so

that the stop mixing angle becomes small. These effects lead to very small branching ratio

for Bs → µ+µ− (� 10−8), making this decay unobservable at the Tevatron Run II. On

the other hand, the aSUSY
µ can be as large as 60× 10−10. For a given N , B(Bs → µ+µ−)

increases as M due to RG effect (see Fig. 2(b)). Also for larger N , B(Bs → µ+µ−) is
enhanced because the scalar masses are suppressed relative to the gaugino masses.

In conclusion, we showed that there are qualitative differences in correlations among

(g − 2)µ, B → Xsγ, and Bs → µ+µ− in various models for SUSY breaking mediation

mechanisms, even if all of them can accommodate the muon aµ: 10 × 10−10 � aSUSY
µ �
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FIG. 2: (a) The contour plots for the aSUSY
µ , mh0, and B(Bs → µ+µ−) with N = 1 and M = 106

GeV. (b) The branching ratio for Bs → µ+µ− as a function of the messenger scale M in the

GMSB with N = 1 for various Λ’s with a fixed tan β = 50. The dashed parts are excluded by

the direct search limits on the Higgs and SUSY particle masses.

40 × 10−10. Especially, if the Bs → µ+µ− decay is observed at Tevatron Run II with

the branching ratio greater than 2 × 10−8, the GMSB with low number of messenger

fields N and certain class of AMSB scenarios would be excluded. On the other hand, the

minimal supergravity scenario and similar mechanisms derived from string models and

the deflected AMSB scenario can accommodate this observation [20] without difficulty

for large tanβ. Therefore search for Bs → µ+µ− decay at the Tevatron Run II would

provide us with important informations on the SUSY breaking mediation mechanisms,

independent of informations from direct search for SUSY particles at high energy colliders.
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