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We have developed an efficient formulation for the study of the generic supersym-
metric standard model, which admits all kind of R-parity violating terms. Using
the formulation, we discuss all sources of fermion dipole moment contributions from
R-parity violating, or rather lepton number violating, parametersand the constraints
obtained. Stringent constraints comparable to those from neutrino masses are re-
sulted in some cases.

I. INTRODUCTION

Fermion electric dipole moments (EDMs) are known to be extremely useful constraints

on (the CP violating part of) models depicting interesting scenarios of beyond Standard

Model (SM) physics. In particular, the experimental bounds on neutron EDM (dn) and

electron EDM (de) are very stringent. The current numbers are given by dn < 6.3·10−26 e·
cm and de < 4.3 · 10−27 e · cm. The SM contributions are known to be very small, given

that the only source of CP violation has to come from the KM phase in (charged current)

quark flavor mixings : dn ∼ 10−32 e · cm and de ∼ 8 · 10−41 e · cm.

Extensions of the SM normally are expected to have potentially large EDM contri-

butions. For instance, for the minimal supersymmetric standard model (MSSM), there

are a few source of such new contributions. For example, they can come in through LR

sfermion mixings. The latter have two parts, an A-term contribution as well as a F -term

contribution. The F -term is a result of the complex phase in the so-called µ-term. The

resulted constraints on MSSM have been studied extensively. We are interested here in

the modified version with R parity not imposed. We will illustrate that there are ex-

tra contributions at the same level and discuss the class of important constraints hence

resulted.

II. FORMULATION AND NOTATION

A theory built with the minimal superfield spectrum incorporating the SM particles,

the admissible renormalizable interactions dictated by the SM (gauge) symmetries to-

gether with the idea that supersymmetry (SUSY) is softly broken is what should be

called the the generic supersymmetric standard model (GSSM). The popular MSSM dif-

fers from the generic version in having a discrete symmetry, called R parity, imposed by

hand to enforce baryon and lepton number conservation. With the strong experimen-
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tal hints at the existence of lepton number violating neutrino masses, such a theory of

SUSY without R-parity deserves ever more attention. The GSSM contains all kinds of

(so-called) R-parity violating (RPV) parameters. The latter includes the more popular

trilinear (λijk, λ
′
ijk, and λ′′

ijk) and bilinear (µi) couplings in the superpotential, as well as

soft SUSY breaking parameters of the trilinear, bilinear, and soft mass (mixing) types. In

order not to miss any plausible RPV phenomenological features, it is important that all of

the RPV parameters be taken into consideration without a priori bias. We do, however,

expect some sort of symmetry principle to guard against the very dangerous proton decay

problem. The emphasis is hence put on the lepton number violating phenomenology.

The renormalizable superpotential for the GSSM can be written as

W = εab

[
µαĤ

a
uL̂

b
α + hu

ikQ̂
a
i Ĥ

b
uÛ

C
k + λ′αjkL̂

a
αQ̂

b
jD̂

C
k +

1
2
λαβkL̂

a
αL̂

b
βÊ

C
k

]
+

1
2
λ′′ijkÛ

C
i D̂C

j D̂
C
k , (1)

where (a, b) are SU(2) indices, (i, j, k) are the usual family (flavor) indices, and (α, β)

are extended flavor indices going from 0 to 3. At the limit where λijk, λ
′
ijk, λ

′′
ijk and µi all

vanish, one recovers the expression for the R-parity preserving MSSM, with L̂0 identified

as Ĥd. Without R-parity imposed, the latter is not a priori distinguishable from the L̂i’s.

Note that λ is antisymmetric in the first two indices, as required by the SU(2) product

rules, as shown explicitly here with ε12 = −ε21 = 1. Similarly, λ′′ is antisymmetric in the

last two indices, from SU(3)C.

R-parity is exactly an ad hoc symmetry put in to make L̂0, stand out from the other

L̂i’s as the candidate for Ĥd. It is defined in terms of baryon number, lepton number, and

spin as, explicitly, R = (−1)3B+L+2S . The consequence is that the accidental symmetries

of baryon number and lepton number in the SM are preserved, at the expense of making

particles and superparticles having a categorically different quantum number, R parity.

The latter is actually not the most effective discrete symmetry to control superparticle

mediated proton decay[1], but is most restrictive in terms of what is admitted in the La-

grangian, or the superpotential alone. On the other hand, R parity also forbides neutrino

masses in the supersymmetric SM. The strong experimental hints for the existence of

(Majorana) neutrino masses is an indication of lepton number violation, hence suggestive

of R-parity violation.

The soft SUSY breaking part of the Lagrangian is more interesting, if only for the fact

that many of its interesting details have been overlooked in the literature. However, we

will postpone the discussion till after we address the parametrization issue.

Doing phenomenological studies without specifying a choice of flavor bases is ambigu-

ous. It is like doing SM quark physics with 18 complex Yukawa couplings, instead of the 10

real physical parameters. As far as the SM itself is concerned, the extra 26 real parameters

are simply redundant, and attempts to relate the full 36 parameters to experimental data

will be futile. In the GSSM, the choice of an optimal parametrization mainly concerns

the 4 L̂α flavors. We use here the single-VEV parametrization[2, 3] (SVP), in which flavor

bases are chosen such that : 1/ among the L̂α’s, only L̂0, bears a VEV, i.e. 〈L̂i〉 ≡ 0;
2/ he

jk(≡ λ0jk) =
√

2
v0

diag{m1,m2,m3}; 3/ hd
jk(≡ λ′0jk = −λj0k) =

√
2

v0
diag{md,ms,mb}; 4/

hu
ik =

√
2

vu
VT

CKM diag{mu,mc,mt}, where v0 ≡
√

2 〈L̂0〉 and vu ≡ √
2 〈Ĥu〉. The big advantage
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of the SVP is that it gives the complete tree-level mass matrices of all the states (scalars

and fermions) the simplest structure[3, 4].

III. LEPTONS IN GSSM

The SVP gives quark mass matrices exactly in the SM form. For the masses of the

color-singlet fermions, all the RPV effects are paramatrized by the µi’s only. For example,

the five charged fermions ( gaugino + Higgsino + 3 charged leptons ), we have

MC =



M2
g2v0√

2
0 0 0

g2vu√
2

µ0 µ1 µ2 µ3

0 0 m1 0 0
0 0 0 m2 0
0 0 0 0 m3


. (2)

Moreover each µi parameter here characterizes directly the RPV effect on the corresponding
charged lepton (�i = e, µ, and τ). This, and the corresponding neutrino-neutralino masses and
mixings, has been exploited to implement a detailed study of the tree-level RPV phenomenology
from the gauge interactions, with interesting results[2].

Neutrino masses and oscillations is no doubt one of the most important aspects of the model.
Here, it is particularly important that the various RPV contributions to neutrino masses, up to
1-loop level, be studied in a framework that takes no assumption on the other parameters. Our
formulation provides such a framework. Interested readers are referred to Refs.[4–8].

IV. SOFT SUSY BREAKING TERMS AND THE SCALAR MASSES

Obtaining the squark and slepton masses is straightforward, once all the admissible soft SUSY
breaking terms are explicitly written down[4]. The soft SUSY breaking part of the Lagrangian
can be written as

Vsoft = εabBα Ha
uL̃

b
α + εab

[
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ij Q̃
a
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uŨ

C
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ijH
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C
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a
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b
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j

]
+ h.c.

+ εab

[
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1
2
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a
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jẼ

C
k

]
+

1
2
Aλ′′

ijkŨ
C
i D̃C

j D̃
C
k + h.c.

+ Q̃†m̃2
Q Q̃+ Ũ †m̃2

U Ũ + D̃†m̃2
D D̃ + L̃†m̃2

LL̃+ Ẽ†m̃2
E Ẽ + m̃2

Hu
|Hu|2

+
M1

2
B̃B̃ +

M2

2
W̃W̃ +

M3

2
g̃g̃ + h.c. , (3)

where we have separated the R-parity conserving A-terms from the RPV ones (recall Ĥd ≡ L̂0).
Note that L̃†m̃2

L̃
L̃, unlike the other soft mass terms, is given by a 4× 4 matrix. Explicitly, m̃2

L00

corresponds to m̃2
Hd

of the MSSM case while m̃2
L0k

’s give RPV mass mixings.
The only RPV contribution to the squark masses is given by a −(µ∗

iλ
′
ijk )

vu√
2
term in the

LR mixing part. Note that the term contains flavor-changing (j �= k) parts which, unlike the A-
terms ones, cannot be suppressed through a flavor-blind SUSY breaking spectrum. Hence, it has
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very interesting implications to quark electric dipole moments (EDMs) and related processses
such as b → s γ[9–11].

The mass matrices are a bit more complicated in the scalar sectors[4, 12]. We illustrated
explicitly here only the charged scalare mass matrix. The 1 + 4 + 3 charged scalar masses are
given in terms of the blocks

M̃2
Hu = m̃2

Hu
+ µ∗

αµα +M2
Z cos2β

[
1
2
− sin2θW

]
+M2

Z sin2β [1− sin2θW ] ,

M̃2
LL = m̃2

L +m†
LmL +M2

Z cos2β
[
−1
2
+ sin2θW

]
+

(
M2

Z cos2β [1− sin2θW ] 01×3

03×1 03×3

)
+ (µ∗

αµβ) ,

M̃2
RR = m̃2

E +mEm
†
E +M2

Z cos2β
[
− sin2θW

]
; (4)

and

M̃2
LH = (B∗

α) +

(
1
2 M

2
Z sin2β [1− sin2θW ]

03×1

)
, (5)

M̃2
RH = − (µ∗

iλi0k )
v0√
2
, (6)

(M̃2
RL)

T =

(
0
AE

)
v0√
2
− (µ∗

αλαβk )
vu√
2
. (7)

Note that m̃2
L

here is a 4×4 matrix of soft masses for the Lα, and Bα’s are the corresponding

bilinear soft terms of the µα’s. AE is just the 3 × 3 R-parity conserving leptonic A-term.

There is no contribution from the admissible RPV A-terms under the SVP. Also, we have

used mL ≡ diag{ 0, mE } ≡ diag{ 0, m1, m2, m3 }.

V. NEUTRON ELECTRIC DIPOLE MOMENT

Let us take a look first at the quark dipole operator through 1-loop diagrams with LR

squark mixing. A simple direct example is given by the gluino diagram. Comparing with

the MSSM case, the extra (RPV) to the d squark LR mixing in GSSM obvious modified

the story. If one naively imposes the constraint for this RPV contribution itself not to

exceed the experimental bound on neutron EDM, one gets roughly Im(µ∗
iλ

′
i11) <∼ 10−6 GeV,

a constraint that is interesting even in comparison to the bounds on the corresponding

parameters obtainable from asking no neutrino masses to exceed the super-Kamiokande

atmospheric oscillation scale[9].

In fact, there are important contributions beyond the gluino diagram and without LR

squark mixings involved. For the MSSM, it is well-known that there is such a contribution

from the chargino diagram, which is likely to be more important than the gluino one when

a unification type gaugino mass relationship is imposed. The question then is if the GSSM

has a similar RPV analog. A RPV version of the chargino diagram is given in Fig.1. The

diagram, however, looks ambiguous. Looking at the diagram in terms of the electroweak
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states involved under our formulation, it seems like a l -k–W̃+ mass insertion is required,

which is however vanishing. However, putting in extra mass insertion, with a µi flipping

the l -k into a h̃+
u first seems to give a non-zero result. The structure obviously indicates

a GIM-like cancellation at worked, and we have to check its violation due to the lack of

mass degeneracy.

.

d dR

.

λ

u
γ

Lk
’

k

C

L

W
+~

li

~’

ikk

k

FIG. 1: The new charginolike diagram.

We have performed an extensive analytical and numerical study, including the complete

charginolike contributions, as well as the neutralinolike contributions, to the neutron

EDM[10]. The charginolike part is given by the following formula :

(
df

e

)
χ-

=
αem

4π sin2θW

∑
f̃ ′∓

5∑
n=1

Im(Cfn∓)
M

χ-n
M2

f̃ ′∓

Qf̃ ′ B

M2
χ-n

M2
f̃ ′∓

+ (Qf −Qf̃ ′) A

M2
χ-n

M2
f̃ ′∓

 ,

(8)

for f being u (d) quark and f ′ being d (u), where

Cun− =
yu

g2

V ∗
2n Dd11

(
−U1n D∗

d11 +
yd

g2

U2n D∗
d21 +

λ′k11

g2

U(k+2)n D∗
d21

)
,

Cun+ =
yu

g2

V ∗
2n Dd12

(
−U1n D∗

d12 +
yd

g2

U2n D∗
d22 +

λ′k11

g2

U(k+2)n D∗
d22

)
,

Cdn− =

(
yd

g2

U2n +
λ′k11

g2

U(k+2)n

)
Du11

(
−V ∗

1n D∗
u11 +

yu

g2

V ∗
2n D∗

u21

)
,

Cdn+ =

(
yd

g2

U2n +
λ′k11

g2

U(k+2)n

)
Du12

(
−V ∗

1n D∗
u12 +

yu

g2

V ∗
2n D∗

u22

)
,

(only repeated index i is to be summed) ; (9)

V †MC U = diag{M
χ-n} ≡ diag{Mc1,Mc2, me, mµ, mτ} while Du and Dd diagonalize the ũ

and d̃ squark mass-squared matrices respectively; and

A(x) =
1

2 (1 − x)2

(
3 − x +

2 lnx

1 − x

)
, B(x) =

1

2 (x− 1)2

[
1 + x +

2 x ln x

(1 − x)

]
.

(10)
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To extract the contribution from the diagram of Fig. 1, we have to look at the pieces

in Cdn∓ with a V ∗
1n and a U(k+2)n. It is easy to see that the n = 1 and 2 mass eigenstates,

namely the chargino states, do give the dominating contribution. With the small µi

mixings strongly favored by the sub-eV neutrino masses, we have

U(k+2)1 =
µ∗

k

Mc1
RR21

and U(k+2)2 =
µ∗

k

Mc2
RR22

(11)

where the RR denotes the right-handed rotation that would diagonalize the first 2 × 2

block of MC. The latter rotation matrix is expected to have elements of order 1. Hence,

we have the dominating result proportional to∑
n=1,2

R ∗
R12

RR2n µ∗
k λ

′
k11

FBA

(
M2

cn

)

where FBA denotes the mass eigenvalue dependent part. The result agrees with what we say

above. It vanishes for Mc1 = Mc2, showing a GIM-like mechanism. However, with unequal

chargino masses, our numerical results indicate that the cancellation is generically badly

violated. More interestingly, it can be seen from the above analysis that a complex phase

in µ∗
k λ

′
k11

is actually no necessary for this potentially dominating chargino contribution

to be there, so long as complex CP violating phases exist in the RR matrix, i.e. in the

R-parity conserving parameters such as µ0.

An illustration of the result is given in Fig. 3 in which variations of the EDM contri-

bution against the tanβ value is plotted. On the whole, the magnitude of the parameter

combination µ∗
iλ

′
i11 is shown to be responsible for the RPV 1-loop contribution to neu-

tron EDM and is hence well constrained. This applies not only to the complex phase, or

imaginary part of, the combination. Readers are referred to Ref.[10] for more details.

VI. DIPOLE MOMENTS OF THE ELECTRON AND OTHER FERMIONS

There is in fact a second class of 1-loop diagrams contributing to the quark EDMs.

These are diagrams with quarks and scalars in the loop, and hence superpartners of

the charginolike and neutralinolike diagrams discussed above. The R-parity conserving

analog of the class of diagrams has no significance, due to the unavoidable small Yukawa

couplings involved. With the latter replaced by flavor-changing λ′-couplings. We can have

a t quark loop contributing to neutron EDM, for example.

For the case of the charged leptons, the two classes of superpartner diagrams merges

into one. But then, all scalars has to be included. The assumption hidden, in our quark

EDM formula above, that only the (two) superpartner sfermions have a significant role

to play does not stand any more.

The above quark EDM formula obviously applies with some trivial modifications

to the cases of the other quarks. For the charge leptons, while the exact formulae would

be different, there are major basic features that are more or less the same. For instance,

for the charged lepton, the λ-couplings play the role of the λ′-couplings. The µ∗
iλi11
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combination contributes to electron EDM while the µ∗
iλi22 combination contributes to

that of the muon. As we have no explicit numerical results to show at the moment, we

refrain from showing any details here. However, we have finished a µ → e γ study[12],

from which the charged lepton EDM formula could be extracted without too much effort.

Interested readers may check the reference for details.

VII. NEUTRINO DIPOLE MOMENTS

Another topic we want to discuss briefly here is the dipole moments of the neutrinos.

Neutrinos as Majorana fermions have vanishing dipole moments. However, flavor off-

diagonal dipole moments, or known as transition dipole moments are interesting. There

are good terrestial as well as astrophysical and cosmological bounds available[13].

The same set of diagrams giving rise to 1-loop neutrino masses within the model give

rise also to dipole moments when an extra photon line is attached. There are two types of
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FIG. 2: Logarithmic plot of (the magnitude of) the neutron EDM result verses tanβ. We show
here the MSSM result, our general result with RPV phase only, and the generic result with
complex phases of both kinds. In particular, the A and µ0 phases are chosen as 7o and 0.1o

respectively, for the MSSM line. They are zero for the RPV-only line, with which we have a
phase of π

4 for λ′311. All the given nonzero values are used for the three phases for the generic
result (from our complete formulae) marked by GSSM.
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such neutrino mass diagrams, the charged and neutral loop ones. A neutral loop diagram

has, of course, no place to attach a photon line. Hence, only the charged loop diagrams

contribute. Checking parameter fits to both neutrino masses and their implications on

dipole moments would be very interesting.

We give in Ref.[7], all contributions to 1-loop neutrino masses within GSSM under a

systematic framework. For example, each diagram composes of two (external) neutrino

interaction vertices. The charged vertices are given by

CR

inm =
yei

g2

V(i+2)n D
l∗
2m − λ∗ikh

g2

V(h+2)n D
l∗
(k+2)m ,

CL

inm = −U1n Dl∗
(i+2)m +

yei

g2

U2n Dl∗
(i+5)m − λihk

g2

U(h+2)n Dl∗
(k+5)m . (12)

A CR∗
jnm CL

inm combination plays the role of Cfn∓ in the formula of Eq.(8), for νi and νj.

Here, we are interested not only in the imaginary part; the real part contribute magnetic

moments. Nevertheless, we have to switch back to the mass eigenstate basis for the

neutrinos to better understand and use the dipole moment results[14].
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