The SM prediction of g-2 of the muon

Thomas Teubner (CERN-TH), with

K. Hagiwara (KEK), A.D. Martin and D. Nomura (IPPP Durham)

- I. Why a reanalysis of the LO hadr. (vac.-pol.) contributions?
- II. Processing the hadronic data: Clustering
 - A fit that's not a fit
 - Advantages. Stability
 - How does it work? A few examples

III. Results

- Adding up the channels. Excl. vs. inclusive
- Comparison with other analyses
- The complete SM prediction for g-2

IV. Summary/Outlook

I. Why a reanalysis?

- Current situation: originally quoted 2.6σ discrepancy between TH and EXP down to $1.x \sigma$ (after 'fixing' of the Light-by-Light scattering contributions), but:
- No Lose: either find sign for New Physics or constrain models beyond the SM. And:
- Both EXP and TH will improve, hence more potential for the future!

Note: The biggest contribution to the TH error comes from the LO hadronic vacuum-polarization. To improve this, we need both:

 \star new, more precise data as input in the dispersion integral

$$a^{had}_{\mu} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma^0_{had}(s) K(s) \,,$$

with
$$K(s) = rac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$$
 ,

- ★ convergence of the many different TH analyses..
 - \longrightarrow careful, data-driven reanalysis to be compared with

see Table ►

and to address the 'puzzle' inclusive \leftrightarrow exclusive (shown up in the similar case of $\Delta \alpha_{QED}$) and/or data \leftrightarrow pQCD, see below.

Evaluations of the LO hadronic contribution a_{μ}^{max} :

authors(year)[Ref]	$a_{\mu}^{\text{had}} \times 10^{10}$	L0 ¹⁰ comments	
Barkov <i>et al.</i> (85)[1]	684.0 ± 11.0	primarily e^+e^- data	
Kinoshita <i>et al.</i> (85)[2]	707.0 ± 18.0	primarily e^+e^- data	
Casas <i>et al.</i> (85)[3]	710.0 ± 11.5	QCD, theory and some e^+e^-	
Martinovič+Dubnička(90)[4]	704.8 ± 11.5	e^+e^- and QCD	
Martinovič+Dubnička(90)[4]	705.2 ± 7.6	e^+e^- and QCD	
Eidelman+Jegerlehner(95)[5]	702.4 ± 15.3	primarily e^+e^- data	
Adel+Ynduráin(95)[6]	711.3 ± 10.3	QCD, theory and some e^+e^-	
Brown+Worstell(96)[7]	702.6 ± 16.0	primarily e^+e^- data	
Alemany <i>et al.</i> (98)[8]	695.0 ± 15.0	primarily e^+e^- data	
Alemany <i>et al.</i> (98)[8]	701.1 ± 9.4	$e^+e^-+ au$ data	
Davier+Höcker(98)[9]	695.1 ± 7.5	e^+e^- , $ au$ and pQCD	
Davier+Höcker(98)[10]	692.4 ± 6.2	e^+e^- , $ au$, and QCD sum rules	
Eidelman+Jegerlehner(98)[11]	696.7 ± 11.9	(update of their result in 1995)	
Jegerlehner(01)[12]	697.4 ± 10.5	primarily e^+e^- data	
Narison(01)[13]	702.1 ± 7.6	e^+e^- , $ au$ and QCD sum rules	
de Trocóniz+Ynduráin(01)[14]	690.9 ± 6.4	e^+e^- and $ au$ data	
Cvetič <i>et al.</i> (01)[15]	702.9 ± 9.6	QCD sum rules	
Cvetič <i>et al.</i> (01)[15]	699.5 ± 9.1	QCD sum rules	
Hoefer+Gluza+Jegerl.(01)[16]	697.4 ± 10.5	addr. rad. corrs. for $\pi\pi(\gamma)$	
HMNT [this analysis]	689.50 ± 5.85	primarily e^+e^- data; 'excl.'	
	683.51 ± 5.70	'incl.'	

Martinovic and Dubnicka have got two values "depending on the way in which the experimental systematic errors of the dominant two-pion contribution to $a_\mu^{\rm vac}$ are taken into account".

Cvetič et al. cites two values depending on the values of the gluon condensate.

II. Processing the hadronic data: Clustering

A fit that's not a fit:

- Need to combine data from different experiments (for the same channel) in one way or another:
 - $\rightarrow \overline{\sum}_{exp} \int \dots$ leads in general to an overestimate of the errors.
 - → Data-points with small errors should dominate nearby data of poor quality, but sparse high quality data should not suppress shape information from other experiments with larger errors.
- Aim: preserve as much exp. information as possible and impose as few theor. constraints as possible on the shape of R (data vs. pQCD) ('minimum bias').
- Our fit-model: piecewise constant R within a *Cluster* of a given (min.) size.
- ▶ Realization: Non-linear χ^2 -minimalization of:

$$\chi^{2}(\bar{R}_{m}, f_{k}) = \sum_{k=1}^{\# of Exp.} \left[\left(1 - f_{k} \right) / \mathrm{d}f_{k} \right]^{2} + \sum_{m=1}^{\# of Cl.} \sum_{i=1}^{N_{\{k,m\}}} \left[\left(R_{i}^{\{k,m\}} - f_{k}\bar{R}_{m} \right) / \mathrm{d}R_{i}^{\{k,m\}} \right]^{2}$$

Advantages. Stability.

- All data contribute, weighted by their uncertainty⁻¹, hence no loss of information.
- Error estimate using the complete covariance matrix, taking into account statistical and systematic (p.t.p. and overall) errors from all different experiments

 \longrightarrow correlations over different energies taken into account!

- Data-sets with a large (overall-) normalization uncertainty can still contribute shape information without leading to artificial pile-up of (asymmetric) fluctuations.
- Easy check of data-consistency and fit-quality via χ^2 , and:
- ▶ we always find a stable a_{μ}^{had} with stable error TOGETHER with a minimal χ^2 when varying the cluster-size.

How does it work? A few examples:

The most important channel: π ' π

Contribution to a_{μ} if integrated from 0.32 up to 2 GeV: $(490.94 \pm 4.75) \cdot 10^{-10}$ Further improvement will be possible soon:

• Radiative return analysis at KLOE aims at an accuracy comparable with the recent CMD-2 measurement from Novosibirsk (but probably cannot near threshold).

• In the tail below 0.6 GeV the data is still poor, but the analysis of CMD-2 is underway, from which alone we estimate¹ an improvement of the error of a_{μ}^{had} of about $1 \cdot 10^{-10}$!

¹using preliminary CMD-2 data with an estimated systematic error of 2% included already in the plot for illustration

$\rho - \omega$ interference.

The result for a_{μ} and it's error are stable w.r.t. the variation of the clustering size; no significant improvement of $\chi^2/d.o.f. \approx 1$ of the overall-fit of the $\pi^+\pi^-$ data for clustering finer than 5 MeV.

ω in the 3π channel.

For the (narrow!) ω and ϕ the same data-driven approach is applied: integration of the $e^+e^- \rightarrow hadrons$ data without using parametrizations of the resonance-shapes. Clustering size: 0.5 MeV. Note the energy scale!

III. Results

Adding up the channels. Excl. vs. inclusive

energy range	comments	$a_{\mu}^{\mathrm{had}} \times 10^{10}$
$2m_{\pi}\ldots 0.32$	chiral PT	2.30 ± 0.05
$0.32 \dots 1.43$	excl. only	597.55 ± 4.97
$1.43 \dots 2.00$	excl. only	38.14 ± 1.68
	incl. only	32.15 ± 2.46
$2.00 \dots 11.09$	incl. only	42.06 ± 1.25
J/ψ and $\psi(2S)$	NW	7.31 ± 0.43
$\Upsilon(1-6S)$	NW	0.10 ± 0.00
$11.09\ldots\infty$	pQCD	2.03 ± 0.01
\sum of all	ex-ex-in	689.50 ± 5.85
	ex-in-in	683.51 ± 5.70

- * Note: pure data-integration without using parametrizations over the ρ , ω and ϕ resonances, hence no problem with double counting, tails, interferences!
- ♦ Extended use of pQCD from 3.00...3.73 and 5.50...∞gives the slightly (but not significantly) smaller values 688.52 ± 5.79 (682.53 ± 5.64).
- ♦ 'Puzzle' exclusive vs. inclusive analysis! Are there 'missing' channels (e.g. neutral modes in incl.) and/or radiative corrections (e.g. vac-pol. in excl.)?

over exclusive data

after 'clustering':

Comparison with selected other analyses

Group	Comments	$a_{\mu}^{\mathrm{had}} \times 10^{10}$
this analysis	ex-ex-in	689.50 ± 5.85
	ex-in-in	683.51 ± 5.70
E+J '95		702.4 ± 15.3
Jegerlehner '01	(update of E+J '98)	697.4 ± 10.5
J. (Marseille, March '02)	(prel., w. new CMD-2 data)	688.9 ± 5.8
this analysis	with their E-'binning' etc.	683.38 ± 6.06
A+D+H '98	primarily e^+e^- data	695.0 ± 15.0
D+H '98	e^+e^- , $ au$ and pQCD	695.1 ± 7.5
D+H '98	e^+e^- , $ au$ and QCD \sum -rules	692.4 ± 6.2
this analysis	with their E-'binning' etc.	690.68 ± 5.91

Note: comparing single channels/energy regimes the biggest discrepancy comes from the $\pi^+\pi^-$ channel.

► Here we use the latest (published) results from CMD-2 for $\sigma_{\pi\pi(\gamma)}^{0}$ (not π formfactor values, sometimes not suitably defined for the use in the dispersion
integral), which include a *corrected* treatment of radiative corrections, very
good systematics (0.6%!) and an improved data-analysis. This is partly
responsible for the reduction of the contribution to a_{μ} in this channel.

 Important improvement through new data from Beijing (BES, inclusive) and from Novosibirsk (CMD-2 and SND, exclusive channels).

? Newer experiments —> smaller x-sections ?

The complete SM prediction of g-2 of the muon

source of	contribution to $a_{\mu} \times 10^{11}$	Ref.
QED	116584705.7 ± 2.9	
EW	152 ± 4	Knecht et al., hep-ph/0205102
LO hadronic	6895 ± 59	this analysis, 'excl.'
	6835 ± 57	this analysis, 'incl.'
NLO hadronic	-100 ± 6	A+D+H '98 in agreement with Krause '97
Light-by-Light	80 ± 40	A. Nyffeler, hep-ph/0203243
\sum	116591732.7 ± 72	'excl.', errors added in quadrature
\sum	116591672.7 ± 70	'incl.', errors added in quadrature
Brookhaven Exp.	116592023 ± 151	Brown et al., PRL86(2001)2227
EXP-TH	290 ± 167	'excl.'
	350 ± 166	'incl.'

IV. Summary/Outlook

- The biggest uncertainty in g-2 still comes from the LO hadronic (vac.pol.) contributions and is about $\pm 60 \cdot 10^{-11}$, but the error from LbL is conservatively estimated to be as high as $\pm 40 \cdot 10^{-11}$.
- We have presented a new, *data-driven* analysis for the LO hadr. contr., including new data from BES, CMD-2, SND.
- 'Non-linear Clustering' allows for a thorough treatment of stat. and sys. errors in the combination of data from different experiments.
- (New) Data in the ω and φ resonance regions are integrated over on the same footing (no resonance-parametrizations). Distortions from underlying background are therefore included automatically.
- au data are not used as it is hard to quantify the associated uncertainty.
- ► For the future:
- ★ Further improved treatment of 'missing channels' and radiative corrections; inclusion of correlations between different experiments and/or channels.
- * Reanalysis of $\Delta \alpha_{\rm QED}$ using the same data-driven approach.
- ★ Use of QCD \sum -rules to disentangle the pQCD \leftrightarrow incl. \leftrightarrow excl. puzzle.
- Waiting for more precise data from direct and radiative return measurements (KLOE, BABAR, BELLE).
- **&** Compare to the forthcoming new g-2 measurement.

Thanks to Simon Eidelman for numerous help and advise with data!

LUCICI CHUCO

- [1] L. M. Barkov et al., Nucl. Phys. B256 (1985) 365.
- [2] T. Kinoshita, B. Nižić, and Y. Okamoto, *Phys. Rev.* D31 (1985) 2108.
- [3] J. A. Casas, C. Lopez, and F. J. Ynduráin, *Phys. Rev.* D32 (1985) 736.
- [4] L. Martinovič and S. Dubnička, *Phys. Rev.* D42 (1990) 884.
- [5] S. Eidelman and F. Jegerlehner, Z. Phys. C67 (1995) 585 (hep-ph/9502298 v2).
- [6] K. Adel and F. J. Ynduráin, hep-ph/9509378.
- [7] D. H. Brown and W. A. Worstell, *Phys. Rev.* D54 (1996) 3237 (hep-ph/9607319).
- [8] R. Alemany, M. Davier, and A. Höcker, Eur. Phys. J. C2 (1998) 123 (hepph/9703220).
- [9] M. Davier and A. Höcker, *Phys. Lett.* B419 (1998) 419 (hep-ph/9711308 and hep-ph/9801361).
- [10] M. Davier and A. Höcker, *Phys. Lett.* B435 (1998) 427 (hep-ph/9805470 v2).
- [11] S. Eidelman and F. Jegerlehner, 1998. (cited in F. Jegerlehner, hep-ph/9901386)
- [12] F. Jegerlehner, hep-ph/0104304.
- [13] S. Narison, Phys. Lett. B513 (2001) 53; Erratum-ibid B526 (2002) 414 (hepph/0103199 v5).
- [14] J. F. de Trocóniz and F. J. Ynduráin, Phys. Rev. D65 (2002) 093001 (hepph/0106025 v5).
- [15] G. Cvetič, T. Lee, and I. Schmidt, hep-ph/0107069 v3.
- [16] A. Hoefer, J. Gluza, and F. Jegerlehner, hep-ph/0107054.