Positron Fraction from Dark Matter Annihilation in the CMSSM

Wim de Boer, Markus Horn, Christian Sander

Institut für Experimentelle Kernphysik Universität Karlsruhe

Wim.de.Boer@cern.ch http://home.cern.ch/~deboerw

SUSY02 Hamburg, June 17, 2002

Outline

CMSSM Constraints

Positron fraction in the CMSSM Parameter Space

Comparison with HEAT data

Summary

Typical Fits to HEAT Data

$\tan \beta = 1.6 \ m_{\gamma}^0 = 190$

 $\tan \beta = 1.6 \ m_{\chi}^0 = 120$

CMSSM Fitprocedure

Choose the 10 GUT supergravity inspired parameters: $\mathbf{m_0}, \ \mathbf{m_{1/2}}, \alpha_{\mathbf{GUT}}, \ \mathbf{M_{GUT}}$ $\mu, \ \mathbf{tan}\beta, \ \mathbf{A(0)}, \ \mathbf{Y_t(0)}, \ \mathbf{Y_b(0)}, \mathbf{Y_\tau(0)}$

Minimize the Higgs potential in order to determine $\mathbf{M}_{\mathbf{Z}}$

Calculate masses and couplings at low energies by integrating about 30 coupled RGE's and decoupling sparticles at thresholds

calculate $Br(b
ightarrow s\gamma)$, a_{μ}^{SUSY}

Determine the best parameters by minimizing:

Repeat fits for all pairs of $m_0, \ m_{1/2}$

Unification of the Coupling Constants in the SM and the minimal MSSM

U. Amaldi, W. de Boer, H. Fürstenau, PL B260(1991) 447 $\alpha_1, \alpha_2, \alpha_3$ coupling constants of electromagnetic –, weak–, and stong interactions $1/\alpha_i \propto \log Q^2$ due to radiative corrections (LO)

From RGE equations: 700 mass [GeV] $\tan \beta = 1.65$ $\mathbf{Y}_{\mathbf{b}} = \mathbf{Y}_{\tau}$ 600 $\mathbf{\hat{q}_{I}}$ Gluino 500 $\tilde{\mathbf{f}}_{\mathbf{R}}$ \mathbf{m}_1 400 $(\mu_0^2 + m_0^2)$ 300 m₂ m_{1/2} Wino 200 Γ_R m Bino 100 0 $\frac{16}{\log_{10}Q}$ 2 12 14 6 8 10 4

Yukawa Unification

Higgs mass vs $\tan \beta$

 $\tan \beta \leq 4.3$ excluded by Higgs limit of 114 GeV!

$\begin{array}{l} \mbox{Yellow band in Figure:} \\ m_t = 175~GeV:~110 < m_h < 120~GeV \\ \mbox{For}~m_t = 175 \pm 5~GeV:~105 < m_h < 125~GeV \\ \mbox{or}~m_h = 115 \pm 3~(stopmasses)~\pm 2~(theory)~\pm 5~top~mass~GeV. \\ (\sigma_{stop} = interval/\sqrt{12}) \end{array}$

Pseudoscalar Higgs heavy by EWSB

EWSB ightarrow large $\mu_0~
ightarrow$ large m_A

mulleevi

mulleevi

600

 $m_0 [GeV]$

800

400

 $m_0 [G_{eV]}$

600

Gaugino Fraction

Allowed Parameter Regions for $\tan\beta=35$

Constraints:

Gauge Unification and EWSB Yukawa Unification (implies only $\tan \beta = 35$) A_0 free (Fit prefers $A_0 > 0$)

Low $\tan \beta$ solution ($\tan \beta < 4.3$) excluded by LEP Higgs limit ($m_h > 114 \; GeV$)

Higgs Contours (high $\tan\beta$ scenario)

 $\mathbf{A} = \mathbf{3}$

 $\mathbf{A} = \mathbf{0}$

A = -2

Evidence for Dark Matter

Reacceleration of universe, as measured by redshift from Supernova Ia, depends on DIFFERENCE of Ω_{Λ} and Ω_{Matter} , while position of first acoustic peak in the CMB is sensitive to the flatness of the universe, i.e. SUM of Ω_{Λ} and Ω_{Matter} .

Dark Matter $\Omega h^2 = 0.3 \pm 0.2$

 $\tan\beta = 1.6$

 $\tan\beta = 5$

Green regions preferred by Boomerang and SN la

Diagrams for Neutralino Annihilation

Only heavy final states relevant (helicity conservation combined with neutralinos are Majorana particles \rightarrow p-wave $\rightarrow \propto$ fermion mass !) All x-sections strong function of tan β Interferences (Z-,t-channel) NEGATIVE Interferences (Higgs-,t-channel) POSITIVE

t-channel Helicity suppression

s,t-channel Interferences

Higgs large, Z small for $b\overline{b}$ final state

x-section vs aneta

Comparison X-sections in CalcHEP and darkSUSY

 $\langle \sigma v \rangle \left[\frac{\mathsf{cm}^3}{\mathsf{s}} \right]$

 $\tan\beta=35, m_A=870~{\rm GeV}, A_t=-1180, A_b=-1610~{\rm GeV}$

$m_0 = 500~{\rm GeV}, m_{1/2} = 500~{\rm GeV}$

	CalcHEP	darkSUSY
bb	$8.1 \cdot 10^{-28}$	$8.2 \cdot 10^{-28}$
$t ar{t}$	$0.8\cdot10^{-28}$	$1.6 \cdot 10^{-28}$
$ au^+ au^-$	$3.8\cdot10^{-29}$	$4.8 \cdot 10^{-29}$
W^+W^-	$2.1 \cdot 10^{-30}$	$2.1 \cdot 10^{-30}$

Neutralino Annihilation X-sections

$\tan\beta = 1.6$

 $\tan\beta = 5$

 $\tan\beta=20$

 $\tan\beta=35$

sigma v_{TOT}

sigma v_{TOT}

Typical Fits to HEAT Data

$\tan \beta = 1.6 \ m_{\gamma}^0 = 190$

 $\tan \beta = 1.6 \ m_{\chi}^0 = 120$

χ^2 contr. for HEAT Data

$\tan\beta = 1.6$

 $\tan\beta = 5$

 $\tan\beta=20$

 $\tan\beta = 35$

Boost factor for HEAT Data

$\tan\beta=1.6$

 $\tan\beta = 5$

 $\tan\beta = 20$

 $\tan\beta = 35$

 $u_{00} = \frac{10^{-10}}{10^{-10}} + \frac{10^{-10}}{10^{-10$

boost-factor (best fit)

boost-factor (best fit)

Typical Fits to HEAT Data

$\tan \beta = 1.6 \ m_{\gamma}^0 = 190$

 $\tan \beta = 1.6 \ m_{\chi}^0 = 120$

Summary

Low values of (tan $\beta < 4.3$) excluded by LEP Higgs Limit of 114 GeV

At larger values of $\tan\beta \ b\overline{b}$ DOMI-NANT FINAL STATE

 $b\overline{b}$ FINAL STATE has orders of magnitude larger x-section than W^+W^- final states

 $b\overline{b}$ FINAL STATE fits the HEAT data as well as the W^+W^- final states

Supersymmetry is excellent candidate to explain Dark Matter in the universe