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The possibility to explain the CMB measurement of the baryon asymmetry with lep-
togenesis results in stringent model independent constraints on some of the see-saw
parameters. These include the quadratic mean of the light neutrino masses that has
to be lower than ∼ 0.17 eV. Furthermore, for maximal CP asymmetry, the observed
value of the baryon asymmetry determines a stringent relation for the temperature of
leptogenesis that has to be in the range (2− 6)× 1011 GeV for ηCMB

B0 = 6× 10−10.

1 The baryon asymmetry of the Universe

The observation of the acoustic peaks in the power spectrum of CMB temperature an-
isotropies confirms that we live in a baryon asymmetric Universe, an important result
already inferred from the study of cosmic rays and primordial nuclear abundances. Within
standard BBN (SBBN) any measurement of a primordial nuclear abundance leads to a
measurement of the baryon asymmetry, conveniently expressed in the form of baryon to
photon number ratio. From the measurement of the Deuterium primordial abundance in
Quasar absorption systems one finds at 1σ 4:

ηSBBN
B0

∣∣
D/H

= (5.6± 0.5)× 10−10 (1)

A multiple measurement of different primordial abundances represents a test of con-
sistency for SBBN and in principle should lead to a more accurate determination of
ηB0. However the results from the Helium and Litium primordial abundances are only
marginally consistent with the Deuterium abundance and thus it is necessary to account
for larger systematic uncertainties and to make some assumptions on their statistical dis-
tribution. Thus an acceptable agreement among the abundances leads to a less precise
determination of the baryon asymmetry 5

ηSBBN
B0 = (2.6− 6.2)× 10−10, (2)

valid approximately at the 90% c.l. 6. The difficulty of SBBN in explaining simultaneously
all the current measurements of primordial abundances can also be interpreted as a hint

aBased on the reference papers 1, 2, 3.
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for the presence of non standard BBN effects. Some of them are well motivated within
those models beyond the Standard Model that can incorporate the see-saw and lead to
leptogenesis. In any case a determination of the baryon asymmetry from SBBN, at a
higher level of accuracy than the range (2), encounters serious obstacles at the present.

Fortunately the recent observation of acoustic peaks in the power spectrum of CMB
temperature anisotropies provides a powerful tool to measure the baryon asymmetry and
to circumvent the difficulties of SBBN. In this case one has a good consistency of different
determinations of the baryon asymmetry from 5 different experiments employing different
techniques 7,8. A recent combined analysis gives 8

ηCMB
B0 = (6.0+0.8

−1.1)× 10−10. (3)

This determination is in reasonable agreement with that one from the SBBN and at
the same level of accuracy. However, in contrast with the SBBN determination, the
consistency of the different experimental results so far makes it quite robust and makes
possible to expect a reduction of the error in a close future: below the 10% level from
the MAP satellite during next years and at the 1% level from the Planck satellite before
the end of this decade. We will therefore use the CMB determination of the baryon
asymmetry in our following considerations.

2 Basics of leptogenesis

Leptogenesis 9 is the cosmological consequence of the see-saw mechanism. This explains
the lightness of neutrino masses by the existence of three RH neutrinos, Ni, much heavier
than the electroweak scale. The decay of the heavy neutrinos violates lepton number and,
in general, also CP conservation, while the cosmological expansion can yield the necessary
departure from thermal equilibrium: all three Sacharov’s conditions are satisfied and a
lepton number can be generated in the early Universe. The possibility for leptogenesis to
explain the observed baryon asymmetry relies crucially on the existence of the non pertur-
bative SM sphaleron processes, that can convert, at temperatures above the electroweak
phase transition, about −1/3 of the lepton number into a baryon number, while keeping
B-L constant. The source of CP violation is naturally provided by the complexity of the
neutrino mass matrices in the see-saw. For each of the three Ni one can introduce a CP
asymmetry parameter defined as:

εi ≡ Γi − Γ̄i

Γi + Γ̄i

, (4)

where Γi and Γ̄i are the decay rates of Ni respectively into leptons (Ni → l + φ̄) and
anti-leptons (Ni → l̄ + φ).

The problem is greatly simplified if one assumes that only the decays of the lightest RH
neutrinos, N1, can influence the final baryon asymmetry. This is true if the asymmetries
generated by the two heavier neutrino decays (with masses M2 and M3), even though not
negligible, are subsequently washed out by the processes (for example inverse decays) in
which the lightest right-handed neutrinos (with mass M1) are involved, at temperatures
T ∼ M1. This assumption implies the existence of a mild hierarchy of masses such that

M2,3
>∼ (2− 3)M1 and also that the wash out N1-processes are strong enough.
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In this way one has to solve a system of only two Boltzmann equations, one for the
number of N1’s and one for the B − L asymmetry. Introducing the convenient variable
z ≡ M1/T , they can be written in the following simple form

10,11,1:

dNN1

dz
= −(D + S) (NN1 − N eq

N1
) , (5)

dNB−L

dz
= −ε1 D (NN1 − N eq

N1
)− W NB−L . (6)

There are four classes of processes that contribute to the different terms in the equations:
decays, inverse decays, ∆L = 1 scatterings and RH neutrino mediated processes. The
first three contribute all together to modify the N1 abundance. Indicating with H the
expansion rate, the term D ≡ ΓD/(H z) accounts for the decays and inverse decays while
the term S ≡ ΓS/(H z) accounts for the ∆L = 1 scatterings. The decays are also the
source term for the generation of the B − L asymmetry, the first term in the second
equation, while all the other processes contribute to the wash out term W ≡ ΓW/(H z)
that competes with the decay source term.

3 A model independent parameterization

It is simple to see that the dependence on ε1 is linear in a way that the final baryon
asymmetry is given by:

Nfin
B−L = N in

B−L − 3

4
ε1 κ0 (7)

Assuming that the wash out processes are strong enough to erase an initial value of NB−L,
generated for example by the decays of the two heavier RH neutrinos or by some other
unspecified mechanism, we will put N in

B−L = 0. This assumption is valid under the same
conditions for which heavier neutrino decays can be neglected and therefore it does not
introduce further restrictions.

The efficiency factor κ0 does not depend on ε1. It is normalized in a way to be 1 in
the limit case that an initial thermal abundance of N1’s decays fully out of equilibrium
at the time when all wash out processes are completely frozen. In this limit the wash out
term in the kinetic equations is uneffective and can be neglected. Let us introduce the
quantity:

m̄ =
√

m2
1 +m2

2 +m2
3 (8)

The quadratic mean of the light neutrino masses is simply related to it by m̄/
√
3. A

remarkable fact is that for masses M1 � 1014GeV (0.1 eV)/m̄)2 the three terms D, S, W
are proportional to an effective neutrino mass m̃1 times a function only of z 11. This
means that the final baryon asymmetry will depend only on two parameters: ε1 and m̃1.
In this case the out of equilibrium limit is obtained for m̃1 → 0. In figure 1 we show the
function κ0 as a function of m̃1, for different values of M1. It can be seen how for small
values of M1 there is no dependence on M1 itself. We performed the calculations both for
an initial thermal abundance (thin lines) and for a zero initial abundance (thick lines).
It is evident how there is a critical value of m̃1 that separates two different regimes. For
m̃1 � 5× 10−4 eV one recovers the limit of out of equilibrium decays and κ0 is strongly
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Figure 1: The efficiency factor
.dependent on the number of initial N1’s. In the case of zero initial neutrinos, κ0 is
determined by the number of N1’s that are produced by inverse decays and scatterings
and this number goes to zero in the limit m̃1 → 0. Therefore in this regime there is a strong
dependence on the initial conditions. For m̃1 	 5×10−4 eV there is no dependence on the
initial conditions and, even for a zero initial number of N1’s, they are rapidly produced
and their number rapidly approaches the thermal value. This means that, in the limit of
large values of m̃1, the dependence of κ0 on the N1 production processes disappears and
only a dependence on the wash out processes is left.

In the intermediate regime the value of κ0 is determined by an interplay between
the wash out processes and the number of decaying N ′

1s, determined both by the initial
number and by the strength of production processes. It is possible to give a numerical fit
of κ0:

κ0 = f−(x−) e−x− + f+(x+) e
−x+ , (9)

with x± = (m̃1/m̃±)
α± . The first term depends on the initial N1 abundance. For an

initial zero abundance:

f−(x−) = f+(x−) = 0.24 x− e−x− , m̃− = 3.5× 10−4 eV; α− = 0.9 . (10)

For an initial thermal abundance:

f−(x−) = e−x−, m̃− = 4.0× 10−4 eV, α− = 0.7 . (11)

The second term is independent on the initial conditions:

f+(x+) = 0.24 x+, m̃+ = 8.3× 10−4 eV, α+ = −1.1. (12)
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In the limit of weak coupling (m̃1 � 5 × 10−4 eV) one has κ0 
 f−(x−), while in the
limit of strong coupling (m̃1 	 5× 10−4 eV) one has:

κ0 
 f+(x+) 
 10−4

(
eV

m̃1

)1.1

. (13)

The two fits are optimal for M1 = 108GeV and are represented in figure 1 with circled
lines. It is interesting to compare these results with an analytical approximation for κ0

originally derived in the context of GUT baryogenesis 12 but also adapted to the case of
leptogenesis (see for example 13):

κ0 = 1 for K � 1 (14)

κ0 =
0.3

K (lnK)0.6
for K 	 1 (15)

As a simple interpolating expression we can use:

κ0 =
0.3

K [ln(1 +K)]0.6

(
1 +

0.3

K [ln(1 +K)]0.6

)−1

(16)

The quantity K is related to m̃1 simply by:

K =
1

2
D|z=1 
 170

m̃1

eV
(17)

The expression (16) is represented in the figure with the triangle line. One can see that it
overestimates the efficiency factor by ∼ 7. This is not surprising because this analytical
approximation takes into account only the inverse decays in the wash out term and it
neglects the other processes that are equivalently important. A more specific analytical
approach was described in 14 and the result for κ0(m̃1) is represented in the figure with
the starry line b. One can see that it better agrees with the numerical results but it still
overestimates them by a factor 2− 3.

For large values of M1 the efficiency factor depends also on M1 itself and actually
for M1 � 1014GeV (0.1 eV)/m̄)2 there is a suppression in the regime for large m̃1. The
suppression is due to a term ∆W ∝ M1 m̄2/z2, originating from the RH neutrinos medi-
ated processes, that, for large M1, dominates in the total wash-out term W 1. This term
suppresses exponentially the baryon asymmetry yielding a term exp (−constM1 m̄2/z̄) in
the efficiency factor, where z̄ is that value of z, larger than 1, at which ∆W starts to
dominate and it can depend only on M1, m̄ and m̃1. Thus , in the most general case, the
final baryon asymmetry can be described in terms of only four parameters: ε1, m̃1, M1

and m̄ c.

bWe deduced it from the figure 1 in14 interpolating the points for M1 = 108 GeV. Strangely the result
does not correspond to the analytical expression that is given in the text and numbered as Eq. (4.3).

cActually, considering that the dependence on M1 and on m̄ occurs only through the product M1 m̄2,
one could use just three parameters. However, from a physical point of view, it is better to distinguish
the dependence on M1 and m̄.
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4 The surface of maximum baryon asymmetry

In order to obtain a prediction for ηB0, to be compared with the measured value ηCMB
B0

in the Eq.(3), one has to multiply Nfin
B−L for the fraction of the B − L asymmetry that

is converted into baryons by the sphaleron processes, given by a factor 28/79 
 1/3, and
divide for the dilution factor f = N�

γ/N0
γ . This takes into account that the generated

baryon asymmetry gets diluted compared to the number of photons that are produced
in the annihilations of all standard model particle species. If one assumes a standard
thermal history of the early Universe then f 
 28 and in the end one gets the simple
relation

ηB0 
 −10−2 ε1 κ0 (18)

A first trivial model independent bound on ηB0 is obtained considering that |ε1| ≤ 1
and thus ηB0 � 10−2 κ0. It is however possible to show a more stringent bound on |ε1|
15,14,16,1,2:

|ε1| ≤ 3

16π

M1

v2

m2
3 − m2

1

m3
= 10−6

(
M1

1010GeV

)
β (19)

From neutrino mixing experiments m2
3 − m2

1 = ∆m2
atm +∆m2

sol and one can write:

β 
 ∆m2
atm +∆m2

sol

0.051 eVm3
(20)

For example in the case of fully hierarchical neutrinos, for m1 = 0, one has m3 =√
∆m2

atm + ∆m2
sol and β 
 1. While in the case of quasi degenerate neutrinos with

m̄ 
 1 eV, one has m3 
 0.58 eV and β 
 0.1. From the CP bound one can see that,
given the atmospheric neutrino mass scale, the mass of the lightest RH neutrino cannot
be higher than 1016GeV otherwise |ε1| would be, absurdly, higher than 1. This has to be
also consistently derived within the see-saw formula. It is certainly true in the oversim-
plified case of one generation see-saw formula: if m � 0.05 eV then M � 1015GeV. For
three generations the result is analogous and again consistent with the CP bound (see
for example 17) as it has to be. Thus in the end one can express the maximum baryon
asymmetry just in terms of the three parameters m̃1, M1 and m̄:

ηmax
B0 
 10−8 β(m̄)

(
M1

1010GeV

)
κ0(m̃1, M1, m̄) (21)

This is the surface of maximum baryon asymmetry and the CMB constraint is given by
the requirement that ηmax

B0 ≥ ηCMB
B0 . Since κ0 and β ≤ 1, one immediately derives a bound

on M1 and thus on the leptogenesis temperature
1:

TL 
 M1 ≥ 108GeV
ηCMB

B

10−10
� 4× 108GeV, (22)

at ∼ 2 σ from the Eq. (3). In the case of a zero initial abundance one can see from the
figure that κ0 ≤ 0.16 and thus a more stringent constraint follows:

TL 
 M1 ≥ 6.25× 108GeV
ηCMB

B

10−10
� 2.5× 109GeV. (23)
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These bounds are saturated in the case of a normal hierarchy such that m1 = 0, m̄ 
√
∆m2

atm and β 
 1. Larger values of m̄ give β > 1 and the constraints become more
restrictive. There is also an upper bound on M1 deriving from the exponential suppres-
sion of κ0 at large M1. Also this constraint becomes more restrictive when the absolute
neutrino mass scale m̄ increases. More generally, the allowed region in the plane (m̃1, M1),
determined by the constraint ηmax

B0 ≥ ηCMB
B0 , shrinks when m̄ increases. Moreover one can

show 18 that m̃1 > m1 and this, for m1 > 0, introduces a second constraint. Increasing
m̄ there will be a value for which the two constraints together cannot be simultaneously
satisfied. This represents an upper limit on m̄ given by m̄ ≤ 0.30 eV 2. In terms of light
neutrino masses it corresponds to have m3 � 0.18 eV and m1 
 m2 � 0.17 eV meaning
that leptogenesis is incompatible with quasi-degenerate light neutrinos.

For maximal CP asymmetry it is possible to show that m̃1 = m3
3. In this case, using

the Eq.(21) and imposing ηmax
B = ηCMB

B , it is possible to derive an expression for TL 
 M1.
For small M1 one can use the Eq.(13) for the efficiency factor and in the end one arrives
to the following stringent relation between the leptogenesis temperature and the absolute
neutrino mass scale 3:

TL 
 M1 
 2 ×1011

(
ηCMB

B

6× 10−10

) ( m3

0.05 eV

)
GeV � 6×1011

(
ηCMB

B

6× 10−10

)
GeV . (24)

5 Conclusions

It is remarkable that the leptogenesis predictions of the final baryon asymmetry can be
expressed in terms of just 4 parameters, in a model independent way. This result relies on
two main assumptions: the existence of a mild hierarchy in the masses of the RH neutrinos
(M2,3 � (2 − 3)M1) and that the initial temperature can be assumed to be larger than
M1. With this parameterization one can easily describe the requirements for a successful
leptogenesis and the most striking result is that the light neutrino masses cannot be too
larger than the atmospheric neutrino mass scale ∼ 0.05 eV, thus ruling out the class of
quasi degenerate neutrino models. This implies a strong, though negative, prediction on
the possibility of future experiments to detect a sub-eV neutrino mass scale, unless their
sensitivity can be pushed below O(0.1 eV). It is also remarkable that a quite precise
temperature for leptogenesis seems to emerge to explain the observed baryon asymmetry.
In conclusion leptogenesis seems to be a testable model to explain the observed baryon
asymmetry, closely related to the absolute neutrino mass scale.
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