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Abstract

In this talk, I review recent works on the Bekenstein-like models of changing
alpha. The original model that admits a scalar field coupled to electromagnetic
F 2
µν predicts this change at the level of O(10−10 − 10−9) for z ∼ 1, far below re-

cent experimental hints at the non-zero change at O(10−5) level. I argue that in
supersymmetric extensions of the same model, one should expect four-five orders of
magnitude enhancement, that make them marginally consistent with the observa-
tional claims.

1 Introduction and summary

This talk is based on the recent work [1]. Since then there has been an important develop-
ment on experimental side [2], which strengthened the statistical evidence for the change
of alpha at redshifts z ∼ 1. On the theoretical side, there appeared a new stringent limit
on the change of alpha implied by meteoritic data [3] that goes back to the formation of
the Solar system.

Speculations that fundamental constants may vary in time and/or space goes back to
the original idea of Dirac [4]. Despite such a reputable origin, this idea has not received
much attention during the last fifty years for the two following reasons. First, there exist
various sensitive experimental checks that coupling constants do not change (See, e.g.
[5]). Second, for a long time there has not been any credible theoretical framework which
would predict such changes.

Twenty years ago Bekenstein [6] formulated a dynamical model of “changing α”. The
model consists of a massless scalar field which has a linear coupling to the F 2 term of
the U(1) gauge field, M−1

∗ φFµνF
µν , where M∗ is an associated mass scale and thought to

be of order the Planck scale. A change in the background value of φ, can be interpreted
as the change of the effective coupling constant. Bekenstein noticed that F 2 has a non-
vanishing matrix element over protons and neutrons, of order (10−3 − 10−2)mN . This
matrix element acts as a source in the φ equation of motion and naturally leads to the
cosmological evolution of the φ field driven by the baryon energy density. Thus, the
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change in φ translates into a change in α on a characteristic time scale comparable to the
lifetime of the Universe or larger. However, the presence of the massless scalar field φ in
the theory leads to the existence of an additional attractive force which does not respect
Einstein’s weak universality principle. The extremely accurate checks of the latter [7] lead
to a firm lower limit on M∗, M∗/MPl > 103 that confines possible changes of α to the
range ∆α < 10−10 − 10−9 for 0 < z < 5 [6, 8].

This range is five orders of magnitude tighter than the change ∆α/α � 10−5 indicated
in the observations of quasar absorption spectra at z = 0.5 − 3.5 and recently reported
by Webb et al. [9].Therefore, it is interesting to explore the possibility of constructing
a dynamical model, including modifications of Bekenstein’s model, which could produce
a large change in α in the redshift range z = 0.5 − 3.5 and still be consistent with
the constraints on ∆α/α from the results of high-precision limits on the violation of
equivalence principle by a fifth force. It is also interesting to study whether the range
∆α/α � 10−5 could be made consistent with the limits on ∆α/α [10]-[13], extracted from
the analysis of element abundances from the Oklo phenomenon, a natural nuclear fission
reactor that occurred about 1.8 billion years ago.

The gap of five orders of magnitude between the desirable range of 10−5 and bounds
of order 10−10 appear to be insurmountable for any sensible modification of Bekenstein’s
theory1. In this paper, we propose a modification of Bekenstein’s idea consistent with
experimental constraints, but relies on a large coupling between the non-baryonic dark
matter energy density and the φ field.

At first, such a coupling may appear strange. Indeed, why should dark matter interact
with the φ field when it is known that dark matter particles are not charged [15] and their
electromagnetic form-factors are also tightly constrained [16]? It turns out that in certain
classes of models for dark matter, and in supersymmetric models in particular, it is natural
to expect that φ would couple more strongly to dark matter particles than to baryons. It is
easy to demonstrate this idea by a simple supersymmetrization of Bekenstein’s interaction.
In addition to the coupling of φ to the kinetic term, F 2, of the gauge boson, φ will acquire
an additional coupling to the kinetic term of the gaugino, M−1

∗ φχ̄�∂χ. If this gaugino
constitutes a significant fraction of the stable LSP neutralino, as is often the case, the
source of φ due to the energy density of dark matter turns out to be dramatically enhanced
compared to the baryonic source,

Dark matter source

baryonic source
∼ (102 − 103)

Ωmatter

Ωbaryon
∼ 103 − 104. (1.1)

Such an enhancement factor compensates, although not entirely, for the tremendous sup-
pression of ∆α once the Eötvös-Dicke-Braginsky (EDB) limits on M∗ are imposed. It
is then reasonable to study this class of models in further detail as they are numerically
much more promising than the original Bekenstein framework.

1A recent publication claiming that the 10−5 change in α is realistic in this framework [14] does not
impose the limits from Eötvös-Dicke-Braginsky experiments.
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2 Generalization of Bekenstein’s model

We start our analysis by formulating a generic action that includes spin-2 gravity, kinetic
and potential terms of the modulus φ, kinetic terms for the electromagnetic field and
baryons as well as the dark matter action,

S =

∫
d4x

√−g

[
−1
2
M2

PlR +
1

2
M2

∗ ∂µφ∂
µφ−M2

PlΛ0BΛ(φ)

−1
4
BF (φ)FµνF

µν +
∑
i=p,n

N̄i(iD/−miBNi(φ))Ni (2.2)

+
1

2
χ̄�∂χ− 1

2
MχBχ(φ)χ

Tχ

]

Throughout this paper we assume a + − −− signature for the metric tensor. In (2.3),
MPl = (8πGN)

−1/2 = 2.4 × 1018GeV is the Planck mass and M∗ is its analogue in the
φ sector. Defined this way, φ is dimensionless. Ni stands for neutrons and protons, and
D/ = γµ(∂µ−ie0Aµ) for protons andD/ = γµ∂µ for neutrons. Here e0 is the bare charge which
remains constant throughout the cosmological evolution (modulo standard RG evolution
of e0 which can be neglected in our analysis). For definiteness, we assume that the dark
matter is predominantly the non-relativistic Majorana fermion χ. While it is clear that
one can associate χ with a neutralino, our approach can be easily generalized to other
forms of cold dark matter. Ellipses stand for the omitted electron and neutrino terms,
as well as for a number of possible interaction terms (i.e. baryon anomalous magnetic
moments, nucleon-nucleon interactions etc.). All mass and kinetic terms are supplied with
φ-dependent factors denoted Bi(φ). In this sense, the cosmological constant term acts as
a the potential for φ.

We shall further assume that the change of φ over cosmological scales is small, ∆φ ≡
φ(t = t0)− φ(t)� 1, where t0 is the present age of the universe. As such, we can expand
all couplings around the current value of φ, which we choose to be zero, φ(t = t0) = 0,

BΛ(φ) = 1 + ζΛφ

BF (φ) = 1 + ζFφ (2.3)

BNi(φ) = 1 + ζiφ

Bχ(φ) = 1 + ζχφ.

The effective fine structure constant depends on the value of φ. As such, φ(t) and ∆α/α
are directly related,

α(φ) =
e2
0

4πBF (φ)

∆α

α
= ζFφ, (2.4)

and we have defined ∆α/α as (α0 − α(t))/α0.
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The cosmological evolution of φ follows from the scalar field equation

M2
∗�φ = −M2

PlΛ0B
′
Λ − B′

F

1

4
〈FµνF µν〉 (2.5)

−〈B′
nmnn̄n +B′

pmpp̄p〉 − 1

2
B′
χMχ〈χTχ〉.

In this formula, primes denote d/dφ, and the average 〈...〉 denotes a statistical average
over a current state of the Universe. The term with FµνF

µν can be neglected to a good
approximation as its average is zero for photons, and its contribution mediated by the
baryon density,

∑
n,p ni〈i|FµνF µν |i〉 is already included in the terms proportional to B′

n,p.

We further note that for a Dirac fermion ψ, the mass term mψψ̄ψ (and the analogous
combination for a Majorana fermion) coincides with the trace of the ψ-contribution to
stress-energy tensor, or ρψ − 3pψ. Thus, the only term, that drives φ in the radiation
domination epoch when ρ = 3p is Λ0B

′
Λ (see e.g. [17, 18]). One can easily check that

the change of φ induced by this term during radiation domination will be small compared
to the ∆φ developed in the subsequent matter domination epoch. Restricting Eq. (2.6)
to matter domination, and assuming a linearized regime (2.3), we derive the following
equation

M2
∗ (φ̈+ 3Hφ̇) = −ρmζm −M2

PlΛζΛ, (2.6)

where H = ȧ/a and ζm is defined as

ρmζm ≡ ρχζχ + ρb(Ypζp + Ynζn). (2.7)

Here, Yp and Yn are the abundances of neutrons and protons in the Universe, including
those bound in nuclei. We also assume that ρm = ρχ + ρb. In a more sophisticated
treatment, one may include the contributions of electrons, the Coulomb energy stored in
nuclei and other minor effects. As discussed in Refs. [6, 8], to good accuracy, ζm remains
constant during the matter dominated epoch.

If the φ-dependent energy density becomes comparable to ρm or ρΛ ≡ M2
PlΛ, Eq. (2.6)

must be solved along with Einstein’s equations and energy conservation as a coupled set
of equations. However, the small φ solutions that we are interested in imply that the ρφ
is small and (2.6) can be treated separately, with a(t) as an input function.

3 Cosmological evolution of the fine structure con-

stant

In this section, we study the cosmological evolution of φ determined by the ζi terms in
Eq. (2.6).

φ̈+ 3Hφ̇ = − 1

M2∗
[ζmρm + ζΛρΛ] = − ρc

M2∗

[
ζmΩm

(a0

a

)3

+ ζΛΩΛ

]
, (3.8)

Here ρc = 3H2
0M

2
Pl is the critical density of the Universe at t = t0 and Ωi = ρi/ρc. The

solution to this equation can be easily found [8, 13, 14]. Throughout this paper we shall
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assume that the Universe is flat and is presently dominated by non-relativistic matter
and a cosmological constant, Ωm+ΩΛ = 1. In this case, the time dependence of the scale
factor is given by

a(t)3 = a3
0

Ωm
ΩΛ

[
sinh(

3

2
Ω

1/2
Λ H0t)

]2

(3.9)

and Eq. (3.8) can be integrated in the analytical form. The first integral is given by

φ̇ = −3ΩmH2
0

M2
Pl

M2∗

a3
0

a3

[
ζmt+

ζΛ

4b
(sinh(2bt)− 2bt)− tc

]
, (3.10)

where b = 3
2
Ω

1/2
Λ H0. In principle, the constant of integration tc could be kept arbitrary.

There is, however, only one natural way of fixing it by imposing initial conditions for
φ̇ deep inside the radiation domination epoch, i.e. at t close to 0. As discussed in the
previous section, during radiation domination the r.h.s of (3.8) is effectively zero. This
leads to a φ̇ ∼ a−3 scaling behavior and means that any initial value of φ̇ will be efficiently
damped by the Hubble expansion over a few Hubble times. Thus, for the solution in the
matter dominated epoch we can safely take φ̇(t = 0) = 0 or equivalently tc = 0.

Integrating of (3.10) gives φ as a function of time,

φ(t) =
4

3

M2
Pl

M2∗

[
(
ζΛ

2
− ζm)(bt0 coth(bt0)− bt coth(bt))− ζm ln

sinh(bt)

sinh(bt0)

]
. (3.11)

Figure 1 shows three different types of solutions for ∆α/α as a function of the red-
shift z, 1 + z = a0/a. In this plot, we have chosen ζF = 10−5, ΩΛ = 0.7 and Ωm = 0.3.
Comparing the three curves, one can see that the variation of α at high red-shifts is mostly
determined by ζm. If ζF is negative, one would need to choose negative ζm in order to get
smaller values of α in the past. Opposite signs of ζF and ζm lead to the larger values of
α in the past.

Given the large parameter space, (M∗, ζF , ζm, ζΛ), one could expect that it is easy
to get ∆α(z = 0.5− 3.5)/α ∼ 10−5 as suggested by the analysis of the quasar absorption
spectra by Webb et al. [9]. On the other hand, it is clear that the EDB constraints
should severely restrict the parameter space of our model. The best constraints on the
long-range forces are extracted from ∆g/ḡ measured in experiments that compare the the
acceleration of light and heavy elements. The differential acceleration of platinum and
aluminium is ≤ 2× 10−12 at the 2σ level (last reference in [7] as quoted in [6]), and the
differential acceleration of the Moon (silica-dominated) and the Earth (iron-dominated)
towards the Sun is ≤ 0.92× 10−12 [19]. Choosing the appropriate values of Z and A and
retaining only the hydrogen contribution to the mass of the Sun, we get

1

ω

∣∣ζp(ζn − ζp + 2.9× 10−2ζF )
∣∣ < 2.5× 10−11 Al/Pt system

1

ω

∣∣ζp(ζn − ζp + 1.8× 10−2ζF )
∣∣ < 2.5× 10−11 Si/Fe system (3.12)

ζn − ζp and ζF enter in Eqs. (3.12) in different linear combinations. Thus, it is possible
to extract separate limits on ω−1ζpζF and ω−1ζp(ζn − ζp). Models that have non-zero ζF
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Figure 1: Three qualitatively different types of solutions for ∆α(z)/α0 that give smaller
values of α in the past for positive ζF . They correspond to the choice of ζF = 10−5 and
(a) ζm = 1, ζΛ = 0 (b) ζm = 1, ζΛ = −2 and (c) ζm = 0, ζΛ = 1. The interval of z,
considered by Webb et al., 0.5 ≤ z ≤ 3.5 is shown by two vertical dashed lines.

also have non-vanishing ζp,n unless some intricate conspiracy of quark, gluon and photon
contributions occur. Barring possible cancellations, one obtains |ζn,p| >∼ |ζn − ζp| >∼
10−3|ζF |. Using these relations, we can combine the preferred range of Ref. [9] with the
constraints, imposed by Eqs. (3.12).

The region excluded by the EDB constraints in the (ζm/
√
ω, ζF/

√
ω) parameter space

is shown by the light shaded (blue) region in Figure 2. Here we have set ζΛ = 0. The long
negative-slope band that connects the upper-left and lower-right hand corners is the range
that reproduces ∆α/α = 10−5 in the interval 0.5 ≤ z ≤ 3.5. In the original Bekenstein
model, ζm = (10−4 to 10−3)ζF and corresponds to the positive slope band close to the
upper-left corner 2. As one can see, the diamond-shaped intersection is deep inside the
range excluded by the EDB experiments. Of course, this is in agreement with conclusions
of [6, 8]. Finally, the dark-shaded (green) area represents the choice of parameters that
can reproduce [9] and still be in agreement with the EDB constraints. For this region,
ζm/

√
ω >∼ 3× 10−3 and ζF/

√
ω < 10−3, which points towards models in which φ couples

to dark matter and the couplings to baryons and ζF are suppressed.

4 Conclusions

In the framework of a very generic model, we can show that the result of Webb et al.
cannot be explained by the simplest Bekenstein model. The preferred source for the
evolution of the scalar field responsible for the change of the coupling constant is its
coupling to dark matter or self potential. We have shown that the supersymmetrization
of the Bekenstein model leads to a large coupling between the scalar field and the susy
partner of photon and to four-five orders of magnitude enhancement in the strength of

2ζm = 10−3ζF would require rather “generous” assumptions about nucleon matrix elements and Ωb
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Figure 2: The (ζm/
√
ω, ζF/

√
ω) parameter space. The dark-shaded (green) region is

consistent with both the EDB constraints and with a possible relative change of α at the
10−5 level, as suggested by Webb et al. The light shaded (blue) region is excluded by
EDB constraints. ζΛ is set to zero in this plot.

the cosmological source for the scalar field compared to the baryonic source. Even in this
case, however, there is a significant difficulty in constructing a model that would give a
non-zero result at quasar times and be consistent with constraints on the change of alpha
imposed by Oklo and meteorite data.
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