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ABSTRACT

We present a model of inflation based on the anomaly-induced effective action

of gravity in the presence of a conformally invariant Hilbert-Einstein term.

Our approach is based on the conformal representation of the fields action

and on the integration of the corresponding conformal anomaly. In contradis-

tinction to the original Starobinsky’s model, inflation can be stable at the

beginning and unstable at the end. The instability is caused by a slowing

down of inflation due to quantum effects associated to the massive fermion

fields. In supersymmetric theories this mechanism can be linked to the break-

ing of SUSY and suggests a natural way to achieve graceful exit from the

inflationary to the FLRW phase.

Introduction

Inflation [1] automatically solves five of the six basic cosmological problems [2]: 1) the

monopole problem, 2) the horizon problem, 3) the flatness-curvature-entropy problem, 4)

the rotation problem, and 5) the large-scale homogeneity versus small-scale inhomogene-

ity problem. The minimum number of e-folds of inflation required can be (roughly) esti-

mated in many different ways. As an example, take a flat Friedmann-Lemâıtre-Robertson-

Walker (FLRW) model, then the scale factor a = a(t) in the matter-dominated (MD) and

radiation-dominated (RD) eras evolve as a ∼ t2/3 and a ∼ t1/2 respectively. Since at

present t0 ∼ 1018 sec (15 Gy) and a(t0) ∼ 1.5×1010lyr ∼ 1028cm, it follows that the scale

factor at the end of the RD epoch (t ∼ 1012 sec ∼ 105 yr) was aR = a(t0)/zR = 1024cm,

where zR ∼ a(t0)/aR = (1018/1012)
2/3

= 104 is the redshift at that time. From this the

scale factor at the Planck time (∼ 10−44 sec) should be a∗P = (10−44/1012)
1/2

aR ∼ 10−4cm,

which is of course untenable! Therefore, to make this number to match up the correct

Planck length, aP ∼ 10−33 cm, we need to supplement the standard FLRW evolution

with an early inflation period in which the number of e-folds of inflation should be around
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ξ ∼ 65:

eξ =
a∗P
aP

= 1029 ⇒ ξ ∼ 67 . (1)

At present, however, the classical cosmological problems that motivated inflation are no

longer regarded as the strongest motivation for inflationary cosmology. For example, the

relation “homogeneity → flatness” is not true. Nowadays we have homogeneous open

models of inflation. Besides providing the solution to some cosmological problems, the

important thing at present is that inflationary models can be (and will be) more and

more accurately tested (something that one could not suspect 10 years ago) through their

specific predictions on the metric and density perturbations, which should be consistent

with structure formation and the anisotropies of the CMB [3]. These are nowadays the

real facts behind ξ > 65 in Eq.(1), rather than the previous and similar heuristic argu-

mentations.

Inflation, however, does not solve the sixth cosmological problem, the cosmological

constant (CC) problem [4]. The fact that the CC has been measured non-zero and pos-

itive [5] poses a new challenge and may require novel approaches. One possibility is to

think of the renormalization group (RG) evolution of the cosmological parameters [6].

We will see that this same approach can be applied to the study of cosmological inflation,

if we identify the RG scale with the expansion rate µ = H(t). This identification can

be understood as follows. At low energy the dynamics of gravity is defined by Einstein’s

equations

Rµν − 1

2
Rgµν = 8πGN (Tµν + gµν Λ ) , (2)

where GN = 1/M2
P is Newton’s constant. Let us use the value of the curvature scalar (R)

to construct an order parameter for the gravitational energy. By dimensional analysis the

RG scale µ for gravity is naturally associated with R1/2. From Eq.(2) we see that this

is equivalent to take µ ∼ √
T µ

µ /M2
P . But in the cosmological setting the basic dynamical

equations refer to the scale factor a(t) of the FLRW metric, and so we must re-express the

graviton energy in terms of it. The 00 component of (2) yields the well-known Friedmann-

Lemâıtre equation

H2 ≡
(
ȧ

a

)2

=
8π

3M2
P

(ρ+ Λ)− k

a2
. (3)

The space curvature term can be safely set to zero (k = 0). The spatial components of

(2), combined with the 00 component (3), yields the following dynamical equation for

a(t):

ä = − 4π

3M2
P

(ρ+ 3 p− 2Λ) a . (4)

In these equations ρ = ρM + ρR is the total energy density of matter and radiation, and

p is the pressure. In the modern Universe p � 0 and ρ � ρ0
M . Moreover, from the recent

supernovae data [5], we know that Λ and ρ0
M have the same order of magnitude as the

critical density ρ0
c . Therefore, the source term on the r.h.s. of (4) is characterized by a
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single dimensional parameter
√
ρ0

c/M
2
P , which according to Eq. (3) is nothing but the

experimentally measurable Hubble’s constant H0. This is obviously consistent with the

expected result
√
T µ

µ /M2
P in the general case because T µ

µ ∼ ρ0
M ∼ ρ0

c for the present-day

universe. Therefore, we conclude that the Ansatz

µ ∼ R1/2 ∼ H(t) (5)

is reasonable and we assume that this identification takes place at each stage of the cosmo-

logical evolution. With this guiding principle, a semi-classical description of gravitational

phenomena of quantum matter in a curved classical background should be possible. In

particular, in the early universe the value of H(t) decides which matter particles are

active degrees of freedom for the RG evolution of the parameters. Therefore, particles

whose masses satisfy M > H(t) will be decoupled from the relevant quantum effects at

time t. Clearly, if one would be able to concoct a natural mechanism by which H(t)

progressively slows down after the universe has achieved a sufficient number of e-folds of

inflation (namely ξ > 65), then inflation should eventually stop and the FLRW regime

could perhaps start. While many authors have looked for a suitable scalar field (so-called

“inflaton”) capable of realizing this scenario[1], in the original Starobinsky’s model [7] in-

flation was attempted by looking for a self-consistent solution of Einstein’s equations when

they are modified to include the vacuum quantum effects. Unfortunately, in Starobinsky’s

model inflation is unstable from the very beginning (with the flat space stable), so that

one has to fine-tune the initial conditions to insure ξ > 65 before inflation stops [8]. It

would be much desirable to find an improved framework where the self-consistent solution

appears first as a stable inflationary solution (hence independent of the initial conditions,

even though space-time is unstable) and such that subsequently (after ξ > 65 is fulfilled)

inflation becomes unstable and the universe transits into the stable and flat FLRW space-

time. Indeed, a modified Starobinsky’s model like that is possible, provided that we can

arrange the condition H(t) → 0 and at the same time distort the stability regime thanks

to a change in the number of active degrees of freedom, e.g. due to a phase transition

from a supersymmetric Grand Unified Theory (GUT) into the Standard Model (SM)

of the strong and electroweak interactions. Such a scenario has been first discussed in

Ref.[9]. It is based on a modification of the anomaly-induced effective action [7, 8, 10] re-

sulting from a prior full conformization of the classical action for gravitational fields [11],

including the Hilbert-Einstein term, and matter fields [12], and on the decoupling of the

supersymmetric particles at low energy [13]. Furthermore, there are strong indications

that the spectrum and the amplitude of the gravitational waves in this model [14, 15] are

in agreement with the existing CMBR data [3]. Recently, also the stability with respect to

small perturbations of the conformal factor of the metric has been studied in the presence

of a cosmological constant [6, 15].
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2. Local conformal invariance and effective action

The expansion of an homogeneous, isotropic universe means a conformal transforma-

tion of the metric gµν(t) → a2(η) gµν, where a(η) = exp σ(η) and η is the conformal time

(dη = dt/a(η)). Suppose that one starts from the conformal invariant formulation of the

Standard Model of the strong and electroweak interactions [12, 16] and of gravity[11],

and then one uses the well-known methods to derive the anomaly-induced action [17, 18].

It is natural to think that the latter can be applied at high energies, where the masses

of the matter fields are negligible. At the classical level, the theory which results from

this procedure is always equivalent to the original theory. Nevertheless, in the quantum

theory the equivalence is destroyed by the anomaly, which can be calculated explicitly.

In particular, the massive fields may also contribute to it. Besides the anomalous terms,

there are the conformal invariant quantum corrections to the classical vacuum action. Our

first purpose is to construct such a formulation of the SM in curved space-time which pos-

sesses local conformal invariance in d = 4. Actually, the procedure can be applied to any

gauge theory, e.g. the SM and extensions thereof, including GUT’s and supersymmetric

generalizations like the Minimal Supersymmetric Standard Model (MSSM) [19].

The original action of the theory includes kinetic terms for spinor and gauge bo-

son fields, as well as interaction terms, all of them already conformal invariant. As for

scalars (e.g. Higgs bosons) we suppose that their kinetic terms appear in the combination

gµν∂µϕ∂νϕ+1/6 ·Rϕ2 providing the local conformal invariance. The non-invariant terms

are the massive ones for the scalar and spinor fields, but also the Hilbert-Einstein term

giving General Relativity at low energies. In all these cases the conformal non-invariance

is caused by the presence of dimensional parameters m2
H , m, M2

P = 1/G. The central

idea is to replace these parameters by functions of some new auxiliary scalar field χ. For

instance, we replace [12]

m2
H → m2

H

M2
χ2 , m → m

M
χ , M2

P → M2
P

M2
χ2 , (6)

where M is some dimensional parameter, e.g. related to a high scale of spontaneous

breaking of dilatation symmetry [12]. Then the scalar and fermion mass terms become

quartic interactions and Yukawa couplings respectively,

1

2

∫
d4x

√−g m2
H

M2
ϕ2 χ2 ,

∫
d4x

√−g m

M
ψ̄ψ χ , (7)

which are of course (local and global) conformal invariant. Furthermore, the Hilbert-

Einstein term gets conformized too:

S∗
EH = − 1

16πGM2

∫
d4x

√−g [
Rχ2 + 6 (∂χ)2

]
. (8)

After setting χ → M this expression becomes identical to the ordinary gravitational

term, and from (7) the ordinary mass terms for scalars and fermions are recovered at
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the same time . This fixing can be called “conformal unitary gauge” in analogy with the

unitary gauge of ordinary gauge theories, and the scaleM can be associated to the vacuum

expectation value of the spontaneously broken dilatation symmetry at high energies [12]

It is supposed that the new scalar field χ takes the values close to M , especially at

low energies. But, there is a great difference between χ and M with respect to the

conformal transformation. The mass does not transform, while χ does. Then, the action

of the new model becomes invariant under the conformal transformation

χ → χ e−σ , (9)

which is performed together with the usual transformations for the other fields

gµν → gµν e
2σ , ϕ → ϕ e−σ , ψ → ψ e−3/2 σ . (10)

Thus, in the matter sector our program of “conformization” is complete. When we quan-

tize the theory, it is important to separate the quantum fields from the ones which rep-

resent a classical background. In order to maintain the correspondence with the usual

formulation of the SM, we avoid the quantization of the field χ which will be considered,

along with the metric, as an external classical background for the quantum matter fields.

It is well known (see, e.g. [18]) that the renormalizability of the quantum field theory in

external fields requires some extra terms in the classical action of the theory. The list of

such terms includes the nonminimal term of the
∫
Rϕ2-type in the Higgs sector, and the

action of external fields with the proper dimension and symmetries. The higher derivative

part of the vacuum action has the form

Svac =

∫
d4x

√−g {
l1C

2 + l2E + l3∇2R
}
, (11)

where, l1,2,3 are some parameters, C2 is the square of the Weyl tensor and E is the

integrand of the Gauss-Bonnet topological invariant. Now, since there is an extra field χ,

the vacuum action should be supplemented by the χ-dependent term. The only possible,

conformal and diffeomorphism invariant, terms with dimension 4 are (8) and the
∫
χ4-

term. The last contributes to the cosmological constant, which we suppose to cancel and

do not consider here. Its effect is reported elsewhere [6, 15].

The next step is to derive the conformal anomaly in the theory with two background

fields gµν and χ . The anomaly results from the renormalization of the vacuum action

including the terms (8) and (11). For the sake of generality, let us suppose that there is

also some background gauge field with strength tensor Fµν . Then the conformal anomaly

has the form

< T µ
µ >= −

{
wC2 + bE + c∇2R+ dF 2 + f [Rχ2 + 6 (∂χ)2 ]

}
, (12)

where w, b, c are β-functions for the parameters l1, l2, l3; f is the β-function for the

dimensionless parameter 1/(16πGM2) of the action (8), and d is the β-function for the
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gauge coupling constant. The values of w, b and c depend on the matter content (Ni

being the number of particles with spin i):

w =
N0 + 6N1/2 + 12N1

120 · (4π)2 , b = − N0 + 11N1/2 + 62N1

360 · (4π)2 , c =
N0 + 6N1/2 − 18N1

180 · (4π)2 .

(13)

Recall that the condition for stable inflation is c > 0 [7]. Then one can play with various

models. For instance, from the previous equation it follows that the particle content of the

SM (N0 = 4, N1/2 = 24, N1 = 12) leads to c < 0 (unstable inflation), which suggests that

with only SM matter fields the inflation period cannot be easily sustained, and it might

be insufficient [7]. On the other hand, for the MSSM [19] (N0 = 104, N1/2 = 32, N1 = 12)

one has c > 0 (stable inflation) etc. Clearly, we need physics beyond the SM in order

to possibly arrange a graceful transit from a regime of stability (insuring the condition

ξ > 65) into another of instability that might hopefully end into the FLRW phase.

We will argue that the presence of the non-zero β-function f could be the necessary

quantum dynamical mechanism for the graceful exit. From direct calculation using the

Schwinger-DeWitt method (see e.g. [18]) we get

f =
∑

i

Ni

3 (4π)2
m2

i

M2
, (14)

where Ni are the number of Dirac spinors with masses mi. We note that bosons do not

contribute to f .

In order to obtain the anomaly-induced effective action, we put gµν = ḡµν · e2σ and

χ = χ̄ ·e−σ , where the metric ḡµν has fixed determinant and the field χ̄ does not change

under the conformal transformation. Then, the solution of the equation for the effective

action Γ̄ proceeds in the usual way [17]. Disregarding the conformal invariant term we

arrive at the following expression [9]:

Γ̄ =

∫
d4x

√−ḡ {wC̄2 + b(Ē − 2

3
∇̄2R̄) + 2b σ∆̄ + dF̄ 2+

+f [ R̄χ̄2 + 6 (∂χ̄)2 ] }σ − 3c+ 2b

36

∫
d4x

√−g R2 . (15)

3. The role of masses in slowing down inflation

In order to understand the role of the particle masses in the anomaly-induced inflation,

let us consider the total action with quantum corrections

St = Smatter + SEH + Svac + Γ̄ . (16)

One of the approximations we made was to disregard higher loop and non-perturbative

effects in the vacuum sector. Another approximation is that we take only the leading-

log corrections. Usually, this is justified if the process goes at high energy scale. If the
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quantum theory has UV asymptotic freedom, the higher loops effects are suppressed, and

our approximation is reliable. At the low-energy limit, we suppose that the massive fields

decouple and their contributions are not important. Then Eq. (16) can be presented in

the form

St =

∫
d4x

√−ḡ
{(

− M2
P

16πM2
+ fσ

)
[ R̄χ̄2 + 6 (∂χ̄)2 ]

−
( 1

4
− dσ

)
F̄ 2

}
+ Smatter + high. deriv. terms . (17)

One can see that the modifications with respect to the case of free massless fields [14]

are an additional f -term and the contribution to anomaly due to the background gauge

fields. In order to restore the Hilbert-Einstein term and get the inflationary solution, we

fix the conformal unitary gauge and put χ = χ̄ eσ = M . Furthermore, we can choose the

conformally flat metric ḡµν = ηµν . Then the gravitational part of the action (17) becomes

Sgrav =

∫
d4x

{
2b (∂2σ)2 − (3c+ 2b) [(∂σ)2 + ∂2σ)]2−

− 6M2
P e2σ (∂σ)2

[
1− 16πM2

M2
P

f
]
−

( 1

4
− dσ

)
F̄ 2

}
. (18)

Computing the equation of motion of a = ln σ in terms of the physical time t (where

dt = a(η)dη) we find

a2....
a + 3a

.
a

...
a −

(
5 +

4b

c

)
.
a

2 ..
a+ a

..
a

2 − M2
P

8πc

(
a2 ..
a+ a

.
a

2
)
+

+
2fM2

c
ln a

(
a2 ..
a+ a

.
a

2
)
+

2fM2

c

ȧ2

a
− dF̄ 2

6ca
= 0. (19)

An exact solution of (19) does not look possible, but it can be easily analyzed within

the approximation that f is not too large. Then the new terms (collected in the second

line of Eq. (19)) can be considered as perturbations. Moreover, the last two of them

are irrelevant, because during inflation they decrease exponentially with respect to the

other terms. Thus, in this approximation, the only one relevant change is the replace-

ment M2
P −→ M2

P

[
1− f̃ ln a(t)

]
where for future convenience we have introduced the

dimensionless parameter

f̃ ≡ 16πf M2

M2
P

=
∑

i

Ni

3π

m2
i

M2
P

. (20)

Notice that f is given by Eq. (14) and so f̃ does not depend on the scale M . Since f

is small, the effect of the masses may be approximated through the modification of the
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Figure 1. (a) Plot of σ = ln(a) versus the physical time t as a result of

the numerical analysis of Eq.(19); t is given in units of 16 π/MP and we fixed

the parameter (20) as f̃ = 10−4. Initial data: a(0) = 1 ,
.
a(0) = H1 ,

..
a(0) =

H2
1 ,

...
a(0) = H3

1 . In this time interval, inflation does not stop, yet; (b) As

in (a), but extending the numerical analysis until reaching an approximate

plateau marking the end of stable inflation.

inflation law a(t) = a0 e
H1t according to 1

H1 =
MP√−16πb

−→ MP√−16πb

[
1− f̃ ln a(t)

]1/2

= H(t) , (21)

To substantiate our claim, we have solved Eq. (19) directly using the numerical methods.

The plots corresponding to the numerical solution of the Eq. (19) are shown in Fig. 1.

Since in the first period of inflation masses do not play much role and the stabilization

of the exponential inflation proceeds very fast, the initial data (in both Eq. (21) and

the plots of Fig. 1) were chosen according to the exponential inflation law. According to

the numerical analysis, the total number of e-folds in the “fast phase” of inflation (until

the Hubble constant becomes comparable to the transition scale M∗ where instability

develops) is about 104 for our particular values of the parameters, and at the last stage

the expansion essentially slows down.

The chosen value of the parameter (20) f̃ = 10−4 in the plot is, as we warned before,

independent of the scale M , and it determines where the process of stable inflation finishes

as well as the number of e-folds. On the other hand, if the scale M∗ is chosen near the

typical SUSY GUT value MSUSY ∼ MX ≈ 1016 GeV for supersymmetry breaking at high

energies, some of the spinor masses mi will be of order MSUSY ≈ 1016 GeV . The latter

assumption is indeed sound because the mi will include the supersymmetric fermions

associated to the super-heavy gauge and Higgs bosons at the GUT scale, and so mi ∼
MX ∼ MSUSY . From Eq. (20) it follows that the parameter f̃ will be numerically smaller

than the one we have assumed in Fig. 1, and consequently the amount of inflation will

1We remind the reader that the coefficient b is negative for any particle content, see (13).
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Figure 2. Plot of H(t) = ȧ(t)/a(t) versus t as a result of the numerical

analysis of Eq.(19) and parameter values as in Fig.1: (a) H(t) near the onset

of the plateau; (b) H(t) well over the plateau.

be larger. But the important qualitative point is that for any value of f̃ the approximate

plateau eventually appears and signals the end of stable inflation. Also notice from Fig. 1

that the initial evolution is close to the exponential inflation, but after that the expansion

slows down due to the quantum effects of massive fermions.

4. Graceful exit from anomaly-induced inflation

Recall from Eq.(5) that H(t) sets the scale of the RG running for the gravitational

part. So if we consider the SUSY breaking and the corresponding change in the number of

active degrees of freedom, then the necessary and sufficient condition for the applicability

of our approach is that H(t) decreases from the initial value about 2 MP/
√−16πb ∼

1018 GeV , down to the lower scale H = M∗ � MSUSY . The outcome is that the evolution

according to (21) lasts until reaching the scale M∗, and after that most of the SUSY

particles are decoupled, the inflationary solution becomes unstable and the FLRW phase

can start. In fact, the crucial point is the existence of a nonvanishing f as it eventually

tempers stable inflation allowing favorable conditions for the universe to tilt into the

FLRW phase.

To justify our claim that M∗ < MSUSY , recall that for a really successful exit from the

inflationary phase we need to make sure that the amplitude of the gravitational waves is

consistent with the observable range of anisotropy in the CMBR. This will be the case if

during the last 65 e-folds of the inflation, the expansion rateH(t) does not exceed 10−5MP .

Then the fluctuations in the amplitude h of these waves, δh/h = H/MP , will preserve the

measured fluctuations in the temperature of the relic radiation according to the relation

δh/h = δT/T = O(10−5). At the lowest end of the inflation interval this condition

corresponds, in our framework, to fix the instability value M∗ ≈ 10−5MP = 1014GeV .

It means that, in reality, we expect that after the onset of the approximate plateau in

Fig. 1 (b), where SUSY breaking occurs, the universe will take a while before entering

the FLRW phase, i.e. the latter will actually initiate at some point well over the plateau

2Notice that |16πb| = O(1) in the MSSM, and it is much larger than 1 in any typical SUSY GUT.
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where H = M∗ ∼ 10−5MP . To better assess this issue we have numerically analyzed H(t)

over the plateau, see Fig. 2. We see that H(t) decreases very fast on it. For instance, from

the comparison of Fig. 2(a) and Fig. 2(b), we find that a 15% increase of the time after

the onset of the plateau amounts H(t) to diminish two orders of magnitude. So in general

H(t) will decrease further below MSUSY , and the difference between M∗ and MSUSY at

the moment of the transition can be significant, say one or two orders of magnitude.

Hence MSUSY can be 1016 GeV and this does not create problems with the CMBR. Let

us also notice the oscillatory behavior of H(t) after reaching the plateau, i.e. when the

system is about jumping into the FLRW phase. Interestingly enough, this behavior could

perhaps be related to the reheating phenomenon, which is of course indispensable before

the universe stabilizes in the FLRW regime.

Overall, we arrive at a consistent picture of the graceful exit in this inflationary sce-

nario. No inflaton field is needed, but only the dynamical work of gravity itself, provided

one starts from a renormalizable, fully conformal-invariant classical picture, together with

the trace anomaly of the matter fields at the quantum level. Moreover, according to (14),

the obtained picture is universal, for it does not depend on the choice of the dilatation

symmetry breaking scale M . If interpreted physically, one can put constraints on M using

the macroscopic forces mediated by the field σ, demanding that this forces should have

the sub-millimeter range, similarly as in [20].
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