
SO(10) GUTs in Higher Dimensions∗

Takehiko Asakaa,b

a Institute of Theoretical Physics, University of Lausanne

CH-1015 Lausanne, Switzerland

b Deutsches Elektronen-Synchrotron DESY

D-22603 Hamburg, Germany

Abstract

We discuss supersymmetic SO(10) unified theories constructed in 6 dimensions.
The breaking of SO(10) group is achieved by the orbifold compactification. In 4
dimensions we obtain a N = 1 supersymmetric standard model which gauge group
is enlarged by an additional U(1) symmetry. This unbroken gauge group is obtained
as intersection of the Pati-Salam and the Georgi-Glashow subgroups of SO(10). The
doublet-triplet splitting in Higgs multiplet arises as in SU(5) models in 5 dimensions.

∗This talk is based on the works with W. Buchmüller and L. Covi [1].
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The supersymmetric grand unified theory (GUT) is an attractive physics beyond the

standard model. The simplest GUT to unify electroweak and strong interactions is based

on the SU(5) gauge group [2]. With the present experimental evidence for neutrino masses

and mixings the larger gauge group SO(10) [3] appears particularly attractive, since it

unifies one family of quarks and leptons, including the right-handed neutrino, in a single

irreducible representation.

However, we have to overcome several issues in the construction of a successful GUT

model. The breaking of GUT gauge groups is in general rather involved and requires

often large Higgs representations. In particular, the serious problem is how to achieve the

mass splitting between the weak doublet and the color triplet Higgs fields. An attractive

solution to these issues has been suggested by Kawamura [4] in the case of SU(5) GUT

in 5 dimensions (5d). Compactification on the orbifold S1/(Z2 × Z ′
2) offers a simple and

elegant explanation of the SU(5) breaking into the standard model gauge group GSM=

SU(3)×SU(2)×U(1) as well as the wanted doublet-triplet splitting. Various aspects of

such SU(5) GUTs in 5d have been extensively studied [5].

In this talk we would like to discuss the breaking of the SO(10) GUT group by the orb-

ifold compactification. In contrast to the SU(5) case the SO(10) breaking is not straight-

forward. In fact, an ideal breaking pattern of SO(10) into the standard gauge group

GSM cannot be obtained by the orbifold boundary conditions (of inner automorphism).

This is because the orbifold breaking does not reduce the rank of the gauge group and

also because GSM is not a symmetric subgroup of SO(10).1 However, it is remarkable

that the extended standard model group, GSM ′=GSM×U(1), is the maximal common

subgroup of two symmetric subgroups of SO(10), say GPS = SU(4) × SU(2) × SU(2) [7]

and GGG = SU(5) × U(1) (cf. Figure 1). This suggests that the SO(10) breaking into

GSM ′ (rather than GSM) can be realized by starting from the six dimensional theory and

by orbifolding to the two different subgroups in the two orthogonal compact dimensions.2

This is the reason why SO(10) GUTs are constructed in 6d [1, 9].

Let us consider a SO(10) Yang-Mills theory in 6d with N = 1 supersymmetry (SUSY).

The gauge multiplet consists of gauge fields AM (M = 0, 1, 2, 3, 5, 6) and two gauginos λ1

and λ2. In the usual 4d superspace, they correspond to one vector superfield V = (Aµ, λ1)

and one chiral superfield Σ = (A5,6, λ2). Here µ = 0, 1, 2, 3, V = V aT a and Σ = ΣaT a

with SO(10) generators T a. The action for the gauge multiplet is given by [10]

S6d =
∫

d6x
{

Tr
[ ∫

d2θ
1

4k
W αWα + h.c.

]
1For a general discussion of the orbifold breaking, see, e.g., Ref. [6].
2SO(10) breakings into GPS and GGG can be done similar to the SU(5) model in 5d. See, e.g., Ref. [8].
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Figure 1: The extended standard model gauge group GSM ′ =SU(3)× SU(2)×U(1)2 as

intersection of the two symmetric subgroups of SO(10), GPS =SU(4)×SU(2)×SU(2) and

GGG =SU(5)×U(1).

+ Tr

[∫
d4θ

1

2kg2

(
(−∂ +

√
2gΣ)e2gV (∂ +

√
2gΣ)e−2gV +

1

2
∂e2gV ∂e−2gV

)]}
, (1)

where tr
(
T aT b

)
= kδab, ∂ = ∂5 − i∂6 and ∂ = ∂5 + i∂6.

The breaking of SO(10) gauge symmetry is achieved by compactifying the extra two

dimensions on the orbifold T 2/(ZO
2 × ZPS

2 × ZGG
2 ). These discrete symmetries are re-

flection symmetries of the extra coordinates y = (x5, x6) with respect to the points

yO = (0, 0), yPS = (πR5/2, 0) and yGG = (0, πR6/2), respectively. Here R5 and R6

denote the compactification radii. They are singular fixpoints on T 2. Further, there

appears the fourth fixpoint at yfl = (πR5/2, πR6/2) [9]. The boundary conditions asso-

ciated with the Z2 symmetries break SO(10) into its subgroups, i.e., SO(10), GPS, GGG

and Gfl = SU(5)′ × U(1)′, at the four fixpoints yO, yPS, yGG and yfl, respectively. In

practice, the party transformations of the gauge multiplet induce these gauge symmetry

breakings. For example, the transformations of the vector superfield V are

PO V (x, yO − y) P−1
O = ηO V (x, yO + y) , (2)

PPS V (x, yPS − y) P−1
PS = ηPS V (x, yPS + y) , (3)

PGG V (x, yGG − y) P−1
GG = ηGG V (x, yGG + y) , (4)

Pfl V (x, yfl − y) P−1
fl = ηfl V (x, yfl + y) . (5)

Those of the chiral superfield Σ are obtained by replacing V by Σ. Here the parity

matrices Pα (α = O,PS,GG and fl) in the vector representation are taken as PO = I (I
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is a 10 × 10 unit matrix),

PPS =



−σ0 0 0 0 0

0 −σ0 0 0 0

0 0 −σ0 0 0

0 0 0 +σ0 0

0 0 0 0 +σ0


, PGG =



σ2 0 0 0 0

0 σ2 0 0 0

0 0 σ2 0 0

0 0 0 σ2 0

0 0 0 0 σ2


, (6)

and Pfl = PPSPGG, where σ0 is a 2 × 2 unit matrix and σi (i = 1, 2, 3) denote the Pauli

matrices.

In Eqs. (2)–(5) the eigenvalues ηα must be ±1 and ηfl = ηPSηGG. The action in

Eq. (1) requires eigenvalues of V a and Σa to be opposite. We choose ηα = +1 for V and

ηα = −1 for Σ for all the parity transformations. The naive dimensional reduction of the

6d theory with N = 1 SUSY results in the 4d theory with N = 2 SUSY. Our choice of

eigenvalues breaks this unwanted extended SUSY in 4d, while keeps the minimal SUSY

in 4d being unbroken for the stabilization of the gauge hierarchy between the GUT scale

and the electroweak scale.

From the viewpoint of the effective 4d theory, each field appears together with the

infinite tower of the Kaluza-Klein states. Their masses are determined by the parities

and only fields for which all parities are positive +1 have massless zero modes. We can

see from Table 1 that zero modes form a vector superfield of the gauge group GSM ′ =

SU(3)×SU(2)×U(1)×U(1)X . Therefore, as a low energy theory, we obtain the minimal

SUSY standard model which gauge group is enlarged by an additional U(1)X .

In Figure 2 we show the fixpoints on T 2. The physical region is obtained by the folding

the shaded region along the dotted line and gluing the edges. The result is a “pillow”

with the four fixpoints, O, OPS, OGG and Ofl, as corners, at which the gauge groups

SO(10), GPS, GGG and Gfl are manifest, respectively. The unbroken gauge group GSM ′

of the effective 4d theory is obtained as intersection of these SO(10) subgroups, SO(10),

GPS, GGG and Gfl.

We should stress that the orbifold T 2/(ZO
2 ×ZPS

2 ×ZGG
2 ) has the periodicity of πR5 and

πR6 in the extra coordinates, although we start from the T 2 with the radii R5 and R6. It

is found that the successive operations ZO
2 ×ZPS

2 and ZO
2 ×ZGG

2 generate the translations

as ZO
2 ×ZPS

2 : (x5, x6) → (x5 + πR5, x6) and ZO
2 ×ZGG

2 : (x5, x6) → (x5, x6 + πR6). This

shows that the considering model can be constructed also on the orbifold T̃ 2/ZO
2 where

T̃ 2 denotes the two torus with the radii R5/2 and R6/2. (See Ref. [9].)

One of the great achievements in GUT constructed on the orbifold is the elegant
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V a(Aµ, λ1) Σa(A5,6, λ2)

GSM ′ GPS GGG ZO
2 ZPS

2 ZGG
2 ZO

2 ZPS
2 ZGG

2

(8, 1)0,0 (15, 1, 1) 240 + + + − − −
(1, 3)0,0 (1, 3, 1) 240 + + + − − −
(1, 1)0,0 (1, 1, 3) 240 + + + − − −
(1, 1)0,0 (15, 1, 1) 10 + + + − − −
(3∗, 1)− 2

3
,4 (15, 1, 1) 104 + + − − − +

(3, 1) 2
3
,−4 (15, 1, 1) 10∗

−4 + + − − − +

(1, 1)1,4 (1, 1, 3) 104 + + − − − +

(1, 1)−1,−4 (1, 1, 3) 10∗
−4 + + − − − +

(3, 2)− 5
6
,0 (6, 2, 2) 240 + − + − + −

(3∗, 2) 5
6
,0 (6, 2, 2) 240 + − + − + −

(3, 2) 1
6
,4 (6, 2, 2) 104 + − − − + +

(3∗, 2)− 1
6
,−4 (6, 2, 2) 10∗

−4 + − − − + +

Table 1: Parity assignment for the bulk gauge multiplet.

realization of the mass splitting between the weak doublet and the color triplet Higgs

fields, as illustrated by Kawamura using the SU(5) model [4]. This attractive mechanism

can work well in the considering model. We introduce two Higgs hypermultiplets in the 6d

bulk, which are 10-plets of SO(10). A hypermultiplet H6d in 6d can be grouped into two

chiral superfields (H,H′) in the 4d superspace. Note that H and H′ transform as complex

conjugates of each other under the gauge group. Hereafter we refer the representation of

H6d to that of H. The bulk action for H and H′ is given by

S =
∫

d6x
{ ∫

d4θ
(
He2gV H + H′e−2gV H′ )

+
[ ∫

d2θ H′( ∂ +
√

2gΣ )H + h.c.
] }

. (7)

The doublet-triplet splitting is realized by the orbifold boundary conditions since it can

project out some components as zero modes from the original SO(10) multiplet. Similar

to the gauge multiplet, the parity transformations of H under the discrete symmetries are

given by

PO H(x, yO − y) = ηO H(x, yO + y) , (8)

PPS H(x, yPS − y) = ηPS H(x, yPS + y) , (9)

PGG H(x, yGG − y) = ηGG H(x, yGG + y) , (10)

Pfl H(x, yfl − y) = ηfl H(x, yfl + y) , (11)
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Figure 2: Fixpoints on T 2. Four different fixpoints are denoted by O, OPS, OGG and Ofl.

Physical region is shown by the shaded region.

and those of H are obtained by replacing H by H′. The action in Eq. (7) demands

eigenvalues ηα of H and H′ are opposite. From now on we denote by ηα the parities of

H. We choose ηO = +1, which means that only one chiral superfield H contains the zero

mode and survives in the effective 4d theory. In Table 2 we show the parity assignment

of the two Higgs hypermultiplets H6d
1 = (H1, H

′
1) and H6d

2 = (H2, H
′
2). It is found that

the ZPS
2 symmetry ensures the splitting between the SU(2) weak-doublets and the SU(3)

color-triplets since it distinguishes between (1, 2, 2) and (6, 1, 1) components under GPS.

The choice of ηPS = +1 leads to massless weak-doublets and massive color-triplets in H1

and H2. Further, we take ηGG = +1 for H1 and ηGG = −1 for H2, which means the

weak doublet comes from the SU(5) 5∗-plet for H1, while from the SU(5) 5-plet for H2.

Therefore, the two Higgs doublets Hd and Hu in the minimal SUSY standard model can

be obtained as the zero modes in the two hypermultiplets H6d
1 and H6d

2 , respectively. It

should be noted that two 10-plets are crucial for the bulk anomaly cancellation. In fact,

the irreducible SO(10) anomalies in 6d do cancel between the gaugino and these two Higgs

10-plets. The detail discussion of the bulk and brane anomalies in 6 dimension is found

in Ref. [11].

In this talk we had discussed the breaking of the SO(10) GUT gauge group in 6d. Un-

fortunately, the additional U(1)X in GSM ′ still survives after the orbifold compactification.

The unbroken electroweak and U(1)B−L gauge symmetries forbid masses for all fermions
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SO(10) 10

GSM (1, 2)−1/2 (1, 2)+1/2 (3∗, 1)+1/3 (3, 1)−1/3

GPS (1, 2, 2) (1, 2, 2) (6, 1, 1) (6, 1, 1)

GGG 5∗−2 5+2 5∗−2 5+2

Hc H Gc G

ZPS
2 ZGG

2 ZPS
2 ZGG

2 ZPS
2 ZGG

2 ZPS
2 ZGG

2

H1 + + + − − + − −
H2 + − + + − − − +

Table 2: Parity assignment for the bulk 10-plets.

including the right-handed neutrinos, and their breakings are related to the generation of

fermion masses. Some models are found in the literature [9, 12, 13, 14].
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