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Abstract
We describe some recent developments in Anomaly Mediated Supersymmetry

Breaking. We focus on resolutions of the tachyonic slepton puzzle based on extend-
ing the MSSM by an anomaly free U1 symmetry, so that exact RG invariance is
preserved.

1 Introduction

The usual assumption of the CMSSM is that at gauge unification:

GAUGINO MASSES (Mi) → M0

SOFT φ3 TERMS (h) → AY ijk

φ∗φ MASSES (m2) → m2
0

(here Y ijk are the Yukawa couplings). There is, however, no compelling theoretical basis
for this. A persuasive alternative is provided by[1] Anomaly Mediated Supersymmetry
Breaking (AMSB):

Mi = m 3
2
βgi
/gi

h = −m 3
2
βY

m2 =
1

2
m 3

2
m∗

3
2
µ
d

dµ
γ (1)

Here γ is the matter multiplet anomalous dimension and m 3
2
is the gaugino mass. The

above relations are precisely RG invariant, and so can be evaluated at any scale; running
from the unification scale is not necessary.

1Talk given by DRTJ
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1.1 The Gaugino sector

An elementary consequence of Eq. (1) is that at low energies we have (approximately)

M1 :M2 :M3 = 0.3 : 0.1 : 1, (2)

to be compared with the usual assumption that M1 = M2 = M3 at gauge unification,
which gives

M1 :M2 :M3 = 0.1 : 0.3 : 1. (3)

Thus in the AMSB scenario, there is likely to be an approximately degenerate triplet of
light winos (a chargino and a neutralino). The characteristic phenomenology (involving
the characteristic decay of the chargino to the neutralino and a charged pion) has been
explored in a number of papers.
Another interesting consequence[2] is that in both AMSB and the CMSSM there is a sum
rule relating the chargino and neutralino masses:

∆M2 = 2
∑

i=1,2

(Mχ±
i
)2 − ∑

j=1···4
(Mχ0

j
)2

= f(gi)M
2
3 + 4M

2
W − 2M2

Z (4)

In AMSB type models it is negative while in the CMSSM it is positive.

1.2 The slepton mass problem

Direct application of the AMSB solution to the MSSM leads, unfortunately, to negative
(mass)2 sleptons. The solution to this which has been most popular is the replacement
m2 → m̂2 where

(m̂2)ij = (m
2)ij +m

2
0δ

i
j. (5)

Here m2 is the basic AMSB solution from Eq. (1) and m2
0 is constant. For example, in

a recent paper[3], de Campos et al applied this solution to an extension of the MSSM to
incorporate bilinear R-parity violation, i.e.

W →W +
∑

i

λiLiH2, (6)

where W is the MSSM superpotential,

W = H2QYtt
c +H1(QYbb

c + LYττ
c) + µH1H2. (7)

This results in interesting phenomenology; for example the mixing between neutral gaug-
inos and neutrinos induces neutrino masses. For a different approach where R-parity
violation is used to resolve the slepton mass problem, see Ref. [4].
Eq. (5) has a major defect which is that it is not RG invariant. If instead we have[5]

(m̂2)ij = (m
2)ij +m

2
0

N∑
a=1

ka(Ya)
i
j (8)
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Table 1: Table of U1 and U
′
1 hypercharges.

Q L tc bc τ c H1 H2

Y 1
6

−1
2

−2
3

1
3

1 −1
2

1
2

Y ′ 7
3

−7 5
3

−19
3

3 4 −4

then m̂2 is RG invariant as long as each Ya corresponds to a U1 invariance of the super-
potential W and also has vanishing mixed anomaly with each MSSM gauge group factor.
(One may also employ a set of Ya corresponding to a U1 R-symmetry, in which case Eq. (8)
is modified[6].) In the MSSM there are two possible flavour-blind[5] linearly independent
sets of such Ya; the hypercharge gauge group U

Y
1 and another, which could be chosen[7]

to be UB−L
1 , or a linear combination of UY

1 and UB−L
1 , which we call U ′

1.
A set of possible U ′

1 charges (chosen so as to satisfy Tr(Y Y
′) = 0) and the corresponding

U1 ones are shown in Table 1. It is easy to show that for k
′ < 0 and −3 > k/k′ > −14, the

contributions to both slepton mass terms from the ka terms in Eq. (8) are positive. With,
for example, ζ1 = km

2
0 = 0.2TeV2 and ζ2 = k

′m2
0 = −0.02TeV2, electroweak symmetry

breaking occurs and a distinctive sparticle spectrum is obtained[5]. An interesting feature
is the existence of sum rules for combinations of masses in which the dependence on ζ1,2

cancels. For example:

m2
t̃1
+m2

t̃2
+m2

b̃1
+m2

b̃2
− 2(m2

t +m
2
b) = 2.79

(m 3
2

40

)2

TeV2,

m2
τ̃1 +m

2
τ̃2 +m

2
t̃1
+m2

t̃2
− 2(m2

t +m
2
τ ) = 1.15

(m 3
2

40

)2

TeV2,

m2
ẽL
+ 2m2

ũL
+m2

d̃L
= 0.90

(m 3
2

40

)2

TeV2,

m2
ũR
+m2

d̃R
+m2

ũL
+m2

d̃L
= 3.56

(m 3
2

40

)2

TeV2,

m2
ũL
+m2

d̃L
−m2

ũR
−m2

ẽR
= 0.90

(m 3
2

40

)2

TeV2,

m2
A − 2 sec 2β

(
m2

τ̃1
+m2

τ̃2
− 2m2

τ

)
= 0.49

(m 3
2

40

)2

TeV2. (9)

(The numerical results above apply for tanβ = 5.)

2 AMSB and the FN mechanism

Although the flavour-blind scenario described in section 1 has the advantage that flavour
changing neutral currents (FCNCs) are naturally suppressed, it is interesting to explore
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Table 2: Table of U1 and U
′
1 hypercharges:FN case

Qi bc1 bc2 bc3 tc2 tc3
8− tc1 − h2 2h2 + t

c
1 − 16 2h2 + t

c
1 − 12 2h2 + t

c
1 − 8 tc1 − 4 tc1 − 8

Li τ c
1 τ c

2 τ c
3 h1

3tc1 + 3h2 − 24 16− 2h2 − 3tc1 20− 2h2 − 3tc1 24− 2h2 − 3tc1 −h2

a marriage between the U1-based solution to the AMSB slepton mass problem and the
Froggatt-Nielsen (FN) mechanism by replacing UB−L

1 with a generation-dependent U1

symmetry: in the hope of providing an explanation for the mass hierarchies and also a
more natural framework for the introduction of neutrino masses.
At first sight this is unattractive because evidently generation-dependent contributions
proportional to Ya in Eq. (8) will give rise to off-diagonal squark and slepton masses when
we rotate to the quark and lepton mass-diagonal bases. However, the following set of
textures provide a solution[8] to this conundrum:

Yt ∼


λ8 λ4 1 +O(λ2)
λ8 λ4 1 +O(λ2)
λ8 λ4 1 +O(λ2)


 , Yb ∼



λ4 λ2 1 +O(λ2)
λ4 λ2 1 +O(λ2)
λ4 λ2 1 +O(λ2)


 ,

Yτ ∼


λ4 λ2 1
λ4 λ2 1
λ4 λ2 1


 (10)

In Yτ the third column entries are O(1); likewise in Yt,b except that in these cases we
require them to differ from each other at O(λ2) only. Imposing this leads to a CKM
matrix of the form

CKM ∼


1 1 λ2

1 1 λ2

λ2 λ2 1


 (11)

which is not of the form of the standard Wolfenstein parametrisation, but does reproduce
its most significant feature, which is the smallness of the couplings to the third generation.
Textures of this “democratic” form manifestly correspond to generation-independent
charge assignments for the left-handed fields; however the Yukawa matrices are diag-
onalised by rotations (to a good approximation) of the left handed fields only . Thus
looking again at Eq. (8) we see that FCNC problems are avoided: for LH fields (which are
rotated) because their charges are flavour-independent, and for RH fields (whose charges
differ) because they are not rotated.
We assume the texture pattern is produced via higher order terms such as H2Qit

c
j(

θt

MU
)aij

where MU represents the scale of new physics. We assume that each Yukawa matrix Yt,b,τ

gains its texture from the vev of a particular θ-charge and that the vevs of the θ-charges
are approximately the same. A set of charges leading to automatic cancellation of mixed
anomalies (for arbitrary charges h2 and t

c
1) is shown in Table 2. It is easy to verify

that with these charges we obtain the democratic texture of Eq. (10) if we use θ-charges
θt = −1, θb = θτ = 2.
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Figure 1: Allowed values of ζ1,2 for tan β = 5, m 3
2
= 40TeV and signµ = −1.

It is straightforward to show that in order to resolve the slepton mass problem we then
require

3tc1 + 4h2 < 24 or 3tc1 + 4h2 > 32, (12)

For the particular choices h2 = 12, t
c
1 = −7/2, m 3

2
= 40TeV, tanβ = 5 and signµ = −1,

we show in Fig. 1 the triangular region in the ζ1,2 plane which leads to an acceptable
electroweak vacuum. For a typical point in the neutralino LSP region (ζ1 = −0.02TeV2,
ζ2 = 0.0227TeV

2), we obtain the following spectrum:

mt̃1,2
= 869, 484, mb̃1,2

= 825, 1082,

mτ̃1,2 = 148, 442, mũL,c̃L
= 931, mũR

= 908,

mc̃R
= 856, md̃L,s̃L

= 934, md̃R
= 998,

ms̃R
= 1042, mẽL,µ̃L

= 149, mẽR
= 117,

mµ̃R
= 323, mν̃e,ν̃µ = 126, mν̃τ = 125

mh,H = 122, 166, mA = 161, mH± = 181,

mχ̃±
1,2

= 112, 575, mχ̃1···4 = 111, 369, 579, 579

mg̃ = 1007 (13)

where all masses are given in GeV. The squarks t̃1, b̃1 and τ̃1 couple more strongly to tL, bL
and τL respectively, though (for our chosen tanβ) the t̃1,2 mixing is of course substantial.
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3 Massive Neutrinos

We could just introduce Dirac masses for the neutrinos, preserving UB−L
1 , and hence

maintain the flavour-blind scenario described in Section 1. This is obviously unappealing
however, as it provides no explanation for the smallness of neutrino masses. So we adopt
the seesaw mechanism:

W → W + 1
2
νcMνcνc +H2LYνν

c (14)

where Yν is 3 × nν , nν being the number of RH neutrinos. In fact we can still preserve
the flavour-blind solution if we assign zero U ′

1 charge to all the ν
c, and generate the Yν

matrix via the FN mechanism. We eschew this for two reasons; firstly because it seems
unnatural to thus generate only Yν (and not Yt,b,τ ); and secondly because we would then
have to consider (or somehow exclude) R-parity violation since clearly, for example the
LH2 bilinear is allowed if H2Lν

c is (with zero charge for νc). We prefer therefore to
use a more exotic assignment of charges such as described in Section 2 with a view to
simultaneously producing an acceptable neutrino spectrum with a U ′

1 which (without
further assumption) naturally suppresses the R-parity violation sector. The simplest such
possibility we have found[8] is to begin with the charge assignments given in Table 2.
Then with two RH neutrinos with U ′

1 charges ±qν and a FN field θν such that

Li + h2 + qν + nqθν = 0

Li + h2 − qν +mqθν = 0, (15)

it is easy to show that if we choose, for example, n = 2 and m = 1 and qθν = −9 then
no renormalisable R-parity violating interactions can be generated using the available
θ-charges.
The resulting pattern of neutrino masses and mixings can accommodate the currently
favoured pattern, i.e. m1 � m2 � m3 (with m1 = 0) and a mixing matrix of the form,
for example,

UMNS ≈


2/
√
6 1/

√
3 0

−1/√6 1/
√
3 1/

√
2

1/
√
6 −1/√3 1/

√
2


 (16)

While these patterns can indeed be obtained they are not specifically predicted by the
model in its present form. It would be interesting if a union of the AMSB and tex-
ture paradigms that naturally led to an appropriate hierarchy and form of UMNS could
be found. There is already a considerable literature devoted to building neutrino mass
models; for recent reviews of the experimental and theoretical situations see for example
Ref. [8].
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