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In this note we show how the presence of a negative cosmological constant localized on

a time–like codimension one hypersurface avoids the conventional space–like singularity of

the big–crunch/big–bang scenarios in Type II supergravity. This localized energy density

arises naturally in string theory as branes with negative tension like orientifolds. The key

idea is that the existence of a cosmological horizon flips the would be space–like singularity

to a time–like singularity leading to a brane resolution of the singularity.

1 Introduction

In the standard cosmological models, a space–like big–bang singularity is present in the

past. The existence of an initial singularity is, to a large extent, independent of the

model, and in fact one can show that, under general assumptions, a singularity in the

cosmological past is inevitable [1]. Despite these problems, the standard cosmological

models (far) below the Planck scale are extremely successful in explaining the present

experimental data. Attempts to solve the cosmological singularity problem lead to the

pre big–bang scenario conjecture [2], motivated by the existence of a minimum distance

in string theory. However, either the exact string backgrounds are not realistic [3], or they

show time–like singularities whose nature has remained unclear [4, 5, 6].

The simplest way to avoid the cosmological singularity is to introduce a bulk positive

cosmological constant, which introduces a uniform negative pressure. In the absence

of other contributions to the stress–energy tensor one obtains a de Sitter space–time.

A de Sitter cosmology is problematic both from the string theory point of view and

from a phenomenological view–point. Although problematic, de Sitter space avoids the
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cosmological singularity by introducing an effectively repulsive part to the gravitational

interaction due to the negative pressure induced by the positive cosmological constant.

Another natural way to avoid the big–bang singularity is the introduction of a cosmo-

logical constant localized on hyperplanes of lower dimension [7], more precisely on domain

walls of codimension one. It was indeed shown in [8] that, in pure gravity, domain walls

with positive tension generate a repulsive gravitational field, for reasons similar to the

ones which drive the dynamics of de Sitter space. We will review these results in the next

section. We will also show that these results, albeit true in pure gravity, are no longer

true in Type II supergravity, where one has to take into account the effects of the dilaton.

Nonetheless we will show that a repulsive background can be produced with domain walls

of negative tension. Even though it is problematic in pure gravity to consider objects

with negative mass, they appear quite naturally in string theory. Orientifold planes are,

for example, hypersurfaces of arbitrary dimension, charged under the Ramond–Ramond

fields, with negative tension and no localized dynamical degrees of freedom [9, 10]. From

the point of view of gravity, O–planes act as sources of matter and gravity fields by adding

a local term in the supergravity action

|T |
∫
Γ
ddx e−φ

√
− detG ±Q

∫
Γ
Ad ,

on the d–dimensional hypersurface Γ, where T and Q are the tension and the charge

respectively. This source term acts as a negative cosmological term localized on the

surface Γ, together with the coupling to the other supergravity fields.

The basic idea that leads to the resolution of the cosmological singularity with negative

tension branes is to start by replacing the big–bang singularity at t = 0 by a cosmological

horizon and to continue space–time across this horizon. To understand the existence

of this horizon it is convenient to consider the description of (d + 1)–dimensional flat

space–time using the Milne and Rindler ‘polar’ coordinates. Along the ‘cosmological’

Milne wedge the metric depends on the cosmological coordinate t, however, as one crosses

the horizon the metric dependents on a space–like coordinate x, and it is foliated by

d–dimensional de Sitter slices. For a general cosmological background one can start by

integrating the classical equations of motion starting from the horizon [6]. Then the

geometry develops a time–like singularity in the Rindler patch which is resolved by the

presence of a orientifold [7], i.e. a negative cosmological constant localized at the boundary

of space–time. Since the boundary conditions on the orientifolds for fields propagating

in the bulk are well defined, the past/future transition amplitudes for quantum fields are

well defined in the geometry. In particular, assuming the trivial vacuum in the past, we

showed in [7] that the particle production rate in the far future is thermal.
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2 Domain Walls in Supergravity

The physics of domain walls in gravity is rather non–intuitive, and it was first explored

in some detail in [8]. One of the interesting results is that, in pure gravity, positive

tension domain walls repel. This fact could be of potential use in cosmology, where one

might use this dynamical mechanism to avoid the big–bang singularity. The basic facts of

domain–wall physics can be obtained using the linearized theory of gravity, even though

the complete results must be derived in the full non–linear setting. Let us review the

basic considerations of [8]. Consider flat D–dimensional space–time, and let us consider

a gravitational source localized on a (p + 1)–dimensional hyperplane. Denoting x⊥ the

Euclidean directions transverse to the hyperplane, the linearized equations for the Einstein

metric gab = ηab + hab read

−� hab = τab δ
(
x⊥)

,

where τab is related to the stress–energy tensor matrix Tab by

τab = Tab −
1

D − 2 ηab T.

Now let us consider a source with energy density T00 = T and pressure Tii = P (i =

1, · · · , p). If T > 0 and P ≥ −T , the effective gravitational mass τ00 is negative whenever

(D − 3)T + pP < 0.

In particular, for a brane with P = −T , the above implies that either p = D − 1 (de
Sitter space) or p = D − 2 (a domain wall).
From now one we will concentrate on the case with D = 10 and P = −T , which is

the relevant case for branes in string theory. The tensor τab is given by

−τ00 = τii =
p− 7
8

T , (i ≤ p) ,

τmm =
p+ 1

8
T , (m > p) .

We see that probes which couple only to the gravitational field will be attracted by a p–

brane for p ≤ 6, and will be repelled by a 8–brane with positive tension T . On the other
hand, in Type II string theory, all brane–like sources, as well as all massive probes, have

non–trivial couplings with other massless SUGRA fields, in particular with the dilaton

field. For a Dp–brane source we must add the source equations for the dilaton and the

RR field

−� Φ =
3− p

4
T δ

(
x⊥)

,

−�A0···p = T δ
(
x⊥)

.
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Let us then consider, for simplicity, a brane probe with the same dimension as the source,

and governed by the action1 (in this section, we are working in the Einstein frame)

−
∫
dp+1x e

p−3
4

Φ
√
− det gab ±

∫
A .

If we consider the function h
(
x⊥

)
= − �−1 δ

(
x⊥

)
, which always decreases away from

the source, then the potentials seen be the probe due to the graviton, dilaton and RR

couplings are given by

Vg =
(p− 7) (p+ 1)

16
T h

(
x⊥)

,

VΦ = −(p− 3)
2

16
T h

(
x⊥)

,

VA = ±T h
(
x⊥)

.

Therefore, even though for p = 8 the gravitational potential Vg is repulsive (as in the

analysis above), the combined gravi–dilaton potential

Vg + VΦ = −T h
(
x⊥)

,

is always attractive for any value of p, as long as T > 0. This seems to suggest that,

in supergravity theory, it is not possible to use the dynamical repulsion of domain walls

in gravity to construct non–trivial cosmological scenarios. On the other hand, in string

theory, there exist objects which, although non–dynamical, effectively act as sources for

the gravity fields with negative tension T < 0. The above analysis then suggests that

orientifolds generically are gravitational repellers, and in particular orientifold domain

walls can be used in cosmological settings. This is the subject of our proposal.

3 Space–time Global Structure

In this section and the next we will show how the results of the previous section, obtained

in the linearized approximation, can be generalized to the full non–linear SUGRA. We

start quite generally by considering (d+ 1)–dimensional gravity coupled to a scalar field

ψ

S =
1

2κ2Ed−1

∫
dd+1x

√
|g|

[
R− β

2
(∇ψ)2 − V (ψ)

]
, (3.1)

1We are careless with the absolute normalization of the probe action. This does not affect the equations
of motion. On the other hand, a correct treatment of a negative–tension probe cannot be analyzed with
a dynamical action (O–planes do not have dynamical degrees of freedom), and can be analyzed fully by
considering the interaction of two sources in the non–linear theory, a problem which will be addressed in
the rest of this note.
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Figure 1: The space–time global structure. We shall see that the geometry develops a time–like
singularity in region II interpreted as a negative tension brane at the boundary of space–
time. This geometry describes a transition from a contracting to an expanding cosmological
phase. Clearly, with this space–time global structure the standard cosmological horizon problem,
associated with the conventional big–bang space–like singularity, does not arise.

where E is an energy scale. In this equation, V (ψ) is the potential for the scalar field,
β is a dimensionless constant and the coordinates are dimensionless in units of 1/E .
Following [6], we are interested in cosmological solutions to the equations of motion of

(3.1) with a contracting and an expanding phase (which we call region I), together with

an intermediate region (denoted by region II). The expanding phase is the standard

Robertson–Walker geometry for an open universe

ds 2
d+1 = −dt2 + a 2

I (t) ds
2 (Hd) ,

ψ = ψI (t) ,
(3.2)

where Hd is the d–dimensional hyperbolic space with unit radius. Therefore, the dynamics

of the system is described by the scalar and Friedman equations

ψ̈I + d ψ̇I
ȧI
aI

= − 1
β

∂V

∂ψI
,

(
ȧI
aI

)2

− 1

a 2
I

=
1

d (d− 1)

[
β

2
ψ̇2
I + V (ψI)

]
,

(3.3)

where dots denote derivatives with respect to the cosmological time t. The contracting

phase is nothing but the time–reversed solution, where we replace in (3.2) t by −t.

In order to have an intermediate region, we are interested in solutions of (3.2) where

aI(t) and ψI(t) are, respectively, odd and even functions of t with initial conditions

aI (t) = t+O
(
t3

)
, ψI (t) = ψ0 +O

(
t2

)
, (3.4)
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for small cosmological time t. This implies that the t = 0 surface does not correspond

to a big–bang singularity, but represents a null cosmological horizon [6]. In this case, the

space–time can be extended across the horizon to an intermediate region II, where the

solution takes the form

ds 2
d+1 = a 2

II (x) ds
2 (dSd) + dx2 ,

ψ = ψII (x) ,

with dSd the d–dimensional de Sitter space. The equations of motion which determine aII

and ψII are again the equations (3.3), with the potential V replaced by −V . Given the

boundary conditions (3.4), regions I and II can be connected along the null cosmological

horizon, just as a Milne universe can be glued to a Rindler wedge to form flat Minkowski

space. Moreover, it is clear that the solution possesses a global SO (1, d) symmetry, which

acts both on Hd and on dSd (see figure 1).

4 Embedding in String Theory

Now let us consider a particular case of the construction of the previous section which

can be embedded in Type II string theory. We consider backgrounds with a non–trivial

RR field. The corresponding ten–dimensional Type II effective action has the form (ls =

2π
√
α′)

S =
2π

l 8
s

[∫
d10x

√
|g|e−2φ

(
R+ 4 (∇φ)2

)
− 1

2

∫
F ∧ F̃

]
,

where F is the RR (d+ 1)–form field strength and F̃ = (F is the dual d̃–form field

strength, with d̃ = 9 − d. A family of solutions, parameterized by an arbitrary constant

gs, can be constructed by considering the following ansatz

E2 dS2 = Λ− 1
2

d+1
d−1 ds 2

d+1 + Λ
1
2 ds2(Td̃) ,

eφ = gs Λ
4−d
4 , F̃ =

1

gsE d̃−1
ε(Td̃) ,

where we have defined

Λ = e2β ψ ,

and the line element dsd+1 is defined in the previous section. The constants E and gs are

related to the electric field and the string coupling at the horizon, respectively. Following

[6], the equations of motion for the metric ds2
d+1 and scalar field are those presented in

the previous section with

V =
1

2
e−ψ , β =

1

2

d− 1
3d− 2 .
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To find the solution for the line element dsd+1 and scalar field ψ we can solve the

equations of motion as a power expansion in the dimensionless coordinate t around the

cosmological horizon. The scale factor starts with an early acceleration phase and then,

at late times, the universe becomes curvature dominated. The scalar field will roll down

the potential from an initial value ψ0 to ψ → +∞. An observer that is comoving with
the expansion could think that at an earlier time the matter density blows up and there

is a cosmological space–like singularity. This is the usual understanding in cosmology.

However, in the picture we are proposing here, there is a past cosmological horizon where

the geometry is perfectly smooth. Of course, there is also a collapsing region I, where the

comoving observer sees a future horizon.

Similarly, we can start from the cosmological horizon and integrate the equations of

motion into region II. Then we see that the geometry develops a singularity where the

scale factor and the scalar field have the behavior

aII (x) = as (xs − x)γ ,

ψII (x) = log [η (xs − x)]2 ,
(4.1)

with the constants γ and η given by

γ =
2β

d− 1 , η−2 = 4β (1− d γ) .

The dimensionless constants as and xs can be determined numerically, and are fixed by

the boundary conditions imposed at the horizon. To investigate the geometry near the

singularity it is convenient to use Λ as a radial variable instead of x. From the behavior

of the scalar field we see that Λ is a growing function as one moves from the singularity

(Λ = 0) to the horizon (Λ = Λ0 ≡ e2βψ0). Near the singularity, in the limit Λ � Λ0, we

obtain the following ten–dimensional background fields [7]

E2dS2 = Λ− 1
2 µ ds2(dSd) + Λ

1
2

[
dΛ2 + ds2(Td̃)

]
,

eφ = gsΛ
4−d
4 , F = − 1

gsEd
dΛ−1 ∧

[√
µd ε(dSd)

]
,

(4.2)

where µ is a constant determined from the constant as in the expansion (4.1). If we

substitute the de Sitter space dSd by the Minkowski space M
d we obtain naively the

solution for Dp–branes (p = d − 1) localized at Λ = 0 and uniformly smeared along T
d̃.

The usual harmonic function H is simply H = Λ because there is a unique transverse

direction. However, the tension associated with the harmonic function proportional to

− � H is negative. Therefore the singularity is correctly interpreted as non–dynamical

orientifold (d − 1)–planes smeared along the T
d̃. When Λ → 0 the radius of the de

Sitter slice
√
µΛ−1/4 diverges, the orientifold looks flat and one approaches the usual
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supersymmetric solution. This solution is interpreted as the geometry of a de Sitter Op–

plane (p = d−1) with radius RdS ∼ 1/E and delocalized along T
d̃. Finally, if we T–dualize

the solution along all the directions of the compact torus, we obtain a geometry describing

the cosmological evolution of an O8–plane, partially wrapped on the torus.

5 Two Dimensional Toy Model

There is a particular case of the above construction where the explicit form of the bulk

fields is known. This corresponds to the case where the geometry is the M-theory com-

pactification on the time–dependent orbifold [6](
M

3/Γ
)
× T

8 ,

where Γ is an element of the Lorentz group associated to a boost and translation. The

orbifold identification is defined through X± ∼ e±2π∆X± and Y ∼ Y +2πR (where X±, Y

are coordinates on M
3). We conveniently define the energy scale E to be E = ∆/R.

Then, a straightforward computation gives the background fields of the type IIA theory.

In region II, this is easily done by using the Rindler ‘polar’ coordinates

EX± = ±xe±(s+y) , Y = y ,

with the result

E2dS2 = Λ
1
2

[
dx2 + ds2(T8)

]
− Λ− 1

2x2ds2 ,

eφ = gs Λ
3
4 = gs

(
1− x2

) 3
4 , F = − 2

gsE
dΛ−1 ∧ ds .

(5.1)

The solution in region I – the Milne wedge – can be obtained by setting x → it and

s → z. If one analyzes the fields in (5.1) near the singularity at x = ±1, one sees that
this geometry corresponds to a O − O particle pair delocalized along the 8–torus. As in

the general case, we can T–dualize the above solution along the compact torus and obtain

a geometry describing the interaction of two flat O8–planes, which act as gravitational

sources as described by the linear theory in section 2.

Let us consider a O−O pair in flat space at some large distance and a D particle near

the O plane. The only force on the D particle is the gravitational (metric and dilaton)

and electric repulsive force due to the O plane, since a OD pair is a BPS configuration.

Hence, the D particle is pushed toward the O plane. Now let us turn on gravity and

consider the back–reaction on the geometry due to the presence of the orientifolds. A

calculation of the potential felt by the D particle in the full geometry shows that the D

particle is pulled away from the O plane into the horizon (and away from the O plane as
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before). The fields generated by the orientifolds induce an energy density between them,

which interacts gravitationally with the D–particle. This gravitational attraction wins

over the D − O repulsion. We conclude that the force that brings the D particle away

from the O–plane is due to the back–reaction on the geometry, which is creating an extra

energy density that interacts gravitationally with the probe.

Finally we can consider the propagation of a quantum field in this background. We

know from string theory that quantum fields satisfy well defined boundary conditions on

orientifold planes. In [7], we have been able to compute, using uniquely the boundary

conditions and continuity across the horizons, the particle production in the expanding

region I due to the geometry, starting with the vacuum state in the contracting region.

We have concluded that the spectrum is thermal, with temperature

T =
E

2π a(τ)
,

where a(τ) is the scale factor and τ the proper cosmological time. This temperature

dependence, typical of radiation domination, is associated to the surface gravity of the

horizon. Therefore, one can extend the same result also to the higher dimensional cases.
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