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Spinoza Institute, Utrecht University

Utrecht, The Netherlands

email: kors@phys.uu.nl

Abstract

Intersecting branes provide a framework to engineer semi-realistic gauge interactions

with massless fermion spectra identical to those of the Standard Model or grand unified

theories. We describe the most general setting where these models can preserve super-

symmetry in the context of perturbative string theory. It is defined by Calabi-Yau and K3

compactifications of type II strings supplemented by a modified world sheet projection,

which leaves N = 1 supersymmetry in the gravity sector. The setting further involves

D-branes wrapped on cycles of middle dimension in the internal geometry, intersecting

in points. The topological data of these configurations determine the chiral matter spec-

trum of the effective theory, while the issues of supersymmetry breaking and stability

also involve geometrical properties of the branes and background space. As an example

of the construction with nice phenomenological properties we briefly discuss a model with

D6-branes on special Lagrangian cycles in the quintic Calabi-Yau that produces the a

Standard Model gauge group and matter spectrum. The presented techniques also offer

a novel approach to six-dimensional orbifold vacua and provide a very efficient method

to obtain their chiral spectra.
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1. Introduction

A central object of string phenomenology is to provide an existence proof for a string
vacuum whose low energy approximation is reproducing the known physics of the Stan-
dard Model or of its supersymmetric and grand unified extensions. As a first approach
one may concentrate on finding models with the correct light degrees of freedom, the
right gauge group and chiral fermion spectra, leaving the details of their dynamics aside
for the moment. Intersecting brane worlds [1] have proven to be a candidate framework
of model building which offers excellent opportunity to meet this requirement [2-9]. In
these string compactifications, the fermion spetrum is determined by the intersection
numbers of certain 3-cycles in the internal space, as opposed for instance to the older
approaches involving heterotic strings, where the number of generations was given by the
Euler characteristic in the simplest case. Beyond these topological data also some more
geometrical issues have been adressed, which provide access to computing the leading
order perturbative scalar potential and determining the dynamics at least at the classical
level [8,10]. Up to now, the construction has been limited to toroidal backgrounds and
orbifolds thereof for the sake of simplicity. This has actually put severe contraints on the
genericity of the examples obtained and prevented to get any possibility of supersymmet-
ric models, except for the one case of the T 6/ZZ2

2 Calabi-Yau-orbifold [11,9], generalizing
the former work on the six-dimensional T 4/ZZ2 K3-orbifold [6]. In the present work, we
describe the general framework of intersecting brane world constructions on any smooth
background Calabi-Yau space. This extends the range of accessible background spaces
to include basically all geometrical string compactifications with supersymmetry in the
bulk gravity sector. Therefore obstacles to finding supersymmetric Standard Model or
GUT compactifications may possibly be overcome.

2. Intersecting brane worlds on Calabi-Yau 3-folds

In the brane world scenarios we are going to consider here, there are D-branes fill-
ing out the entire four-dimensional space-time providing the degrees of freedom for an
effective gauge theory. The overall transverse six-dimensional space is compact, such that
the internal excitations decouple from the effective theory below the string scale. The
global consistency conditions in string models with D-branes that fill out the non-compact
space-time involve the cancellation of the Ramond-Ramond (RR) charges. Furthermore,
supersymmetry requires the cancellation of the brane tensions and the corresponding
Neveu-Schwarz-Neveu-Schwarz (NSNS) tadpoles as well. If the latter is neglected, one
can achieve the RR charge cancellation within type II vacua by including anti-branes,
but these vacua usually suffer from run-away instabilities, if not even tachyons. The
only setting in which objects with negative tension arise naturally in string theory are
orientifolds, where the orientifold O-planes can balance the charge and tension of the
D-branes. Therefore, orientifolds provide the framework where supersymmetric brane
worlds may be found within string theory.

2.1. Definition

According to the above reasoning we will consider orientifold compactifications,
where the ten-dimensional space-time X is of the kind

X = IR3,1 × M6

Ωσ
. (2.1)
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Here M6 is a Calabi-Yau 3-fold with a symmetry under σ, the complex conjugation

σ : zi �→ z̄i, i = 1, ... , 3, (2.2)

in local coordinates. It is combined with the world sheet parity Ω to form the orientifold
projection Ωσ. Orientifold O6-planes are defined as the fixed locus Fix(σ) of σ, which is
easily seen to be a supersymmetric 3-cycle in M6. It is special Lagrangian (sLag) and
calibrated with respect to the real part of the holomorphic 3-form Ω3. This orientifold
projection truncates the gravitational bulk theory of closed strings down from a theory
with 16 supercharges in ten dimensions to 4 supercharges and N = 1 in four dimensions,
after compactifying on the Calabi-Yau. In order to cancel the RR charge of the O6-planes
it is required to introduce D6-branes into the theory as well, which will provide the gauge
sector of the theory. If we label the individual stacks of D6a-branes with multiplicities
Na by a label a, the gauge group of the effective theory will be given by G =

∏
a U(Na).

2.2. RR charges and brane tension

The general Chern-Simons action for Dp-branes and Op-planes was first given in
[12,13]. It measures the RR charge of these objects, the relative normalization of the
charge of an orientifold Op-plane given by Qp = −2p−4. The situation simplifies dras-
tically for D6-branes on sLag 3-cycles, where the characteristic classes that classify the
topology of the gauge, tangent and normal bundles become trivial and the only contri-
bution in the CS-action then comes from the RR 7-form potential C7.

In the following we denote the homology class of Fix(σ) by πO6 = [Fix(σ)] ∈ H3(M6)
and the homology class of any given brane stack D6a-brane by πa. By our assumptions
the πa are never invariant under σ but mapped to image cycles π′

a. Therefore, a stack of
D6-branes is wrapped on that cycle by symmetry, too. The RR charge cancellation can
now easily be deduced by looking at the equation of motion of C7

1
κ2

d � dC7 = µ6

∑
a

Na δ(πa) + µ6

∑
a

Na δ(π′
a) + µ6Q6 δ(πO6), (2.3)

where δ(πa) denotes the Poincaré dual form of πa, µp = 2π(4π2α′)−(p+1)/2, and 2κ2 =
µ−1

7 . Upon integrating over M6 the RR-tadpole cancellation condition becomes a relation
in homology ∑

a

Na (πa + π′
a) − 4πO6 = 0. (2.4)

Similarly one can determine the disc level tension by integrating the Dirac-Born-Infeld
effective action. Whenever the potential is non-vanishing, supersymmetry is broken and
a classical vacuum energy generated by the net brane tension. If we demand that any
single D6a-brane conserves the same supersymmetries as the orientifold plane the cycles
πO6 and πa must all be calibrated with respect to 	(Ω3). In this case, the RR charge
and NSNS tension cancellation is equivalent.

2.3. Massless modes and chiral spectra

The action of Ωσ on the cohomology determines the spectrum of the closed string
bulk modes as usual. The most important input for constructing intersecting brane world
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models of particle physics are the formulae that determine the spectrum of the chiral
fermions of the effective theory in terms of topological data of the brane configuration
and the Calabi-Yau manifold. Roughly speaking, at any intersection point of two stacks
of D6-branes a single chiral fermion is localized [14], transforming in the bifundamental
representation of the two respective gauge groups. As was mentioned already, the search
for a viable model close to the Standard Model particle content boils down to looking
for Calabi-Yau spaces with an involution σ and an intersection form for its 3-cycles that
allows to realize the desired particle spectrum at the intersections.

To obtain the chiral spectrum of a given set of D6-branes wrapped on cycles πa with
their images on π′

a and the O6-planes wrapped on πO6 few considerations are necessary.
The only novelty is that in addition to the standard operation by Ω a permutation of the
branes and intersection points by σ occurs, formally encoded in acting by a permutation
matrix on the Chan-Paton labels that determine the representation under the gauge
group. According to these rules, the spectrum of left-handed massless chiral fermions is
shown in table 1.

Representation Multiplicity

[Aa]L 1
2

(π′
a ◦ πa + πO6 ◦ πa)

[Sa]L 1
2 (π′

a ◦ πa − πO6 ◦ πa)

[(Na,Nb)]L πa ◦ πb

[(Na,Nb)]L π′
a ◦ πb

Table 1: Chiral fermion spectrum in d = 4

Due to the topological nature of the chiral spectrum table 1 should hold for every smooth
Calabi-Yau manifold and even the six-dimensional torus [15]. Little can be said about the
fate of the D-brane setting away from the limit of classical geometry, when venturing into
the interior of the Kähler moduli space, where potentials may be generated. Therefore,
the configuration will in general not be stable, but the important point is, whenever the
setting is describable purely in terms of D6-branes on sLag 3-cycles table 1 may apply.

2.4. The Quintic

Now that we have collected the machinery to construct intersecting brane worlds on
general Calabi-Yau 3-folds, we proceed to discuss the example of the quintic. One defines
the Fermat quintic by the following hypersurface in CIP4

Q :
5∑

i=1

z5
i = 0 ⊂CIP4. (2.5)

It has the obvious involution from the complex conjugation of the coordinates zi → zi as
a symmetry. The fixed points of σ are the real quintic

∑5
i=1 x5

i = 0 ⊂ IRIP4, topologically
a sLag IRIP3. Upon applying the ZZ5

5 symmetry of the quintic one can generate a whole
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class of 54 = 625 different minimal IRIP3 defined via

|k2, k3, k4, k5〉 def=
{

[x1 : ωk2x2 : ωk3x3 : ωk4x4 : ωk5x5]
∣∣∣xi ∈ IR,

5∑
i=1

x5
i = 0

}
. (2.6)

The only information further needed is their intersection form, determined in [16]. Using
the intersection matrix for the 125 sLags that are calibrated by the same 3-form as the
O6-plane one can check that they generate a 101-dimensional subspace of H3(Q). In
order to construct any supersymmetric brane world model, it would be necessary to
use D6-branes wrapping these 125 cycles only. Only in this case the scalar potential
generated by the tension of the branes would be balanced by the negative tension of the
O6-planes. Unfortunately, this turns out to be impossible with the present class of sLags,
since it is found that the intersections among themselves all vanish. Therefore, a chiral
spectrum cannot be reconciled with a supersymmetric groundstate. However, it is indeed
possible to construct a model with the correct intersection numbers by dropping the
requirement of supersymmetry, as we shall demonstrate in the following. The breaking
of supersymmetry is still of a special and somehow weak nature, since the individual
stacks still respect some supersymmetry generators, just not all the same. This can have
interesting consequences for the dynamics of the effective gauge theory.

In order to realize the three generation Standard Model spectrum on an intersecting
brane world on the Fermat quintic with an O6-plane on the cycle πO6 = |0, 0, 0, 0〉 and
additionally wrap D6-branes on the following 3-cycles

πa = |0, 0, 3, 1〉
πb = |4, 3, 0, 3〉
πc = |3, 0, 1, 1〉 − 2 |4, 3, 0, 3〉
πd = |4, 2, 4, 4〉 − 2 |0, 0, 3, 1〉

⇒

π′
a = |0, 0, 2, 4〉

π′
b = |1, 2, 0, 2〉

π′
c = |2, 0, 4, 4〉 − 2 |1, 2, 0, 2〉

π′
d = |1, 3, 1, 1〉 − 2 |0, 0, 2, 4〉 .

(2.7)

They just reproduce the “intersection numbers of the Standard Model” as proposed in
[7]: If one wraps 3 branes on πa, 2 branes on πb, and a single brane on πc and πd, the
gauge group is U(3)×U(2)×U(1)2 before performing any anomaly analysis. The latter
is actually of great importance since the anomalous Abelian factors decouple through
a Green-Schwarz mechanism. Furthermore, there can appear Stückelberg mass terms
for gauge bosons even in the absence of anomalies. The two effects together can be
combined to leave exactly the hypercharge gauge boson massless, while the other three
Abelian factors get massive at the string scale.

3. Intersecting brane worlds in six dimensions

The methods developed above for constructing four-dimensional intersecting brane
world models on smooth Calabi-Yau backgrounds can also be applied to orbifolds. In this
case one first needs to resolve the singular geometry in order to be able to compare to the
classical data encoded in the intersection numbers. In this section we demonstrate the ele-
gance and technical simplicity of the construction for six-dimensional K3-orbifolds, which
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is slightly simpler than Calabi-Yau-orbifolds, and via the six-dimensional constraints on
anomaly cancellation offers an excellent check on the consistency of the results. Of course,
some modifications need to be applied to the four-dimensional prescriptions in order to
adapt to the K3. We are not going to explain everything in detail, but refer the reader
to [17] for more instructions and proper definitions.

In general, the compactification of type IIB on a K3 leaves N = (0, 1) supersymmetry
in six dimensions. The involution σ now leaves fixed sLag 2-cycles in the K3, which are
wrapped by O7-planes, whose charge is then canceled by D7-branes, according to the
cancellation condition ∑

a

Na (πa + π′
a) − 8 πO7 = 0. (3.1)

The gauge group supported by the various stacks is again given by a product of unitary
factors, while the chiral spectrum can be determined in complete analogy to the four-
dimensional case and can be found in [17]. From the cancellation of the gravitational R4

anomaly it now follows that
πO7 ◦ πO7 = 2(9 − nT), (3.2)

a strong consistency requirement that relates the topology of the O7-plane and the num-
ber of tensor multiplets in the effective theory.

One can demonstrate that the spectrum of table 4 reproduces essentially all known
orbifold models of type IIB orientifolds on K3 [18-21], although their results are usually
obtained after lengthy CFT computations and tedious Chan-Paton algebra. In this sense,
the concept of intersecting branes also offers a technical short-cut to produce such super-
symmetric orientifold spectra. In the following we shall now discuss just one example of
a K3-orbifold.

We specialize to the T 4/ZZ2 orbifold limit of K3. The action of ZZ2 on the coordinates
z1, z2 of the T 4 is by reflection. The homology includes some 2-cycles πa on the K3 which
are inherited from the torus 2-cycles, corresponding to massless modes in the untwisted
sector of the CFT in the singular limit. They are organized in orbits under ZZ2 and the
intersection form of these 2-cycles on the orbifold can be computed from the torus data.

In addition the resolution of the fixed points of Θ give rise to exceptional 2-cycles,
massless fields in the twisted sectors of the orbifold CFT. For the ZZ2 orbifold there are
16 2-cycles blown-up to CIP1 at the 16 fixed points Pij . The exceptional divisors are then
denoted eij . Their intersections read eij ◦ ekl = −2 δikδjl, the Cartan matrix of A16

1 . As
can be deduced from comparing to the CFT limit [21], the O7-planes only wrap 2-cycles
πa inherited from the torus and no exceptional divisors. Its homology class is then given
by πO7 = 2(π13+π24). The action of Ωσ on the cohomology of K3 is summarized together
by

[σ]AA = diag (12,−120) , (3.3)

with 1n denoting unit matrices of rank n. From this the number of tensor multiplets
follows as the number of eigenvalues +1 minus 1 to be nT = 1. Computing the self-
intersection number of the orientifold plane we find πO7 ◦ πO7 = 16, consistent with
(3.2).

For the simple case of a ZZ2 orbifold group, one can directly compare the results
of this procedure to the standard ZZ2 orientifold of type IIB string theory [22,18], since
the projection by Ωσ is equivalent to the standard projection by Ω upon performing
T-dualities along the two circles parameterized by �(zi). One particular solution of the
tadpole constraints can then be found recovering the spectrum and gauge group first
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discovered by Bianchi and Sagnotti and described in terms of D-branes by Gimon and
Polchinski. In order to do so, we introduce just two stacks of fractional D7-branes with
multiplicities N1 = N2 = 16, supporting U(16)2. The cycles are

π1 =
1
2

(π13) +
1
2

(e11 + e12 + e21 + e22) ,

π2 =
1
2

(π24) +
1
2

(e11 + e13 + e31 + e33) ,

(3.4)

plus their images under Ωσ. Their intersections can be easily determined to produce the
chiral massless spectrum of [22,18].
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hep-th/0003024.
[16] I. Brunner, M. R. Douglas, A. Lawrence, and C. Römelsberger, JHEP 0008 (2000)

015, hep-th/9906200.
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