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Introduction

Thermodynamics of Black Holes associates a BH-entropy

SBH =
AH

4G4

kBc
3

~

with event horizon. To be more than just a formal
analogy with conventional thermodynamics, Black Holes
must emit thermal radiation. This was indeed found
by Hawking and �xed proportionality constant.

Q: But what are the microscopic d.o.f. leading to this
entropy?

(Main) String-Theory approaches:

� Counting microscopic d.o.f. in weakly coupled
regime and export result to strongly coupled
regime (supersymmetry!)

� Map spacetime to another spacetime (T- and S-
Dualities and/or boost transformations) whose
entropy is microscopically understood, e.g. D=3
BTZ black hole or near-extremal branes

Unfortunately indirect counting makes it diÆcult to
see what the degrees of freedom are that make up
the black hole. Are they located at the horizon or
outside?



Quantum Geometry:

� led to derivation of BH-entropy for D=4 Schwarz-
schild case but had to �x undetermined propor-
tionality constant (Barbero-Immirzi parameter)
appropriately

Subsequently we want to describe an approach which
is rooted in String-/M-Theory as it exploits dual brane
doublets but which does not exploit stringy dualities or
relies on supersymmetry. It is meant as an approach to
deal directly with the generic strongly coupled (gs ' 1)
regime.

BH-Entropy and Dual Brane Doublets

Consider type II String-Theory on D=10 Lorentzian
spacetimeM1;3�Mp�1�M7�p (p = 1; : : : ;5) with D=4
spherical symmetry

ds2 =g(2)
��
(t; r)dx�dx� + r2d
2+ g(p�1)

ab
(xc)dxadxb

+g(7�p)
kl

(xm)dxkdxl

where x�; x� = ft; rg and d
2 is the line-element of a
unit two-sphere S2.

D=4 Newton's Constant related to Regge slope �0

and string coupling constant gs through

G4 =
G10

Vp�1V7�p
=

(2�)6�04g2s
8Vp�1V7�p

;



where Vi = vol(Mi) � R
Mi d

ix
p
g(i).

Now wrap two orthogonal Euclidean \electric-magnetic"
dual branes, Dp and D(6� p), around S2 �Mp�1 and
M7�p, resp. such that they cover the whole internal
space plus the external sphere.

Dirac-quantisation condition demands

�Dp�D(6�p) =
1

(2�)6�04g2s
:

Thus we can write

1

G4
= 8(�DpVp�1)(�D(6�p)V7�p) :

Q: But what do these dual branes have to do with a
speci�c D=4 spacetime with (spherical) event horizon
S2H whose BH-entropy we want to understand?

A: Dual Branes act as supergravity sources which lead
to the geometry

(D=4 Spacetime)� (Compact internal Space)

with the identi�cation

S2 � S2H

With this identi�cation we can rewrite D=4 BH-entropy
as

SBH =
AH

4G4

= 2SNGDp S
NG
D(6�p) ;



where

SNGDp = �Dp

Z
S2�Mp�1

dp+1x
p
det g

SNGD(6�p) = �D(6�p)

Z
M7�p

d7�px
p
det g

are the Nambu-Goto actions.

The factor 2 tells us to repeat the procedure and em-
ploy a doublet of those Euclidean brane pairs which
may di�er from each other.

Therefore let us wrap ANOTHER dual Euclidean brane
pair Dp0 �D(6� p0), with Dp0 and D(6� p0) again or-
thogonal, in the same manner as before around the
S2 plus the internal space.

D=4 BH-entropy becomes

SBH = SDpSD(6�p)+ SDp0SD(6�p0) :

Notice: we are free to exchange any of the appear-
ing branes with an ANTI-BRANE and still arrive at
the same rewriting (as long as the inclusion of the
antibrane gives the requested D=4 spacetime)

This formula works for all dual branes of String- and
M-Theory. Thus

SBH =
X
i=1;2

SEi
SMi

;



where

(Ei;Mi) 2 f(Dpi;D(6� pi));

(F1; NS5);

(NS5; F1);

(M2;M5);

(M5;M2)g
and it is understood that any brane or string might
also be replaced by its anti-brane or anti-string partner

For D=4 SCHWARZSCHILD Black Hole one would
take self-dual (D3;D3) + (D3;D3) doublets:

t r � � 4 5 6 7 8 9
D3
D3
D3
D3

� � � �
� � � �

� � � �
� � � �

brane+antibrane! CHARGELESSNESS, non-dilatonic
D3 ! solution to Einstein VACUUM equations (see
hep-th/0204206).

Chain-States and their Entropy

For a Lorentzian brane its tension is interpreted as

�Dp =mass=(unit of p-volume)

For a EUCLIDEAN BRANE more natural to interpret

�Dp = v�1Dp � l�(p+1)Dp



in terms of a smallest fundamental volume unit (anal-

ogous to smallest length
p
�0 for strings but here for

chains to be introduced shortly)

! Hence Euclidean brane consists of

NDp = �Dp

Z
dp+1x

p
det g = SNGDp :

CELLS

! D=4 BH-entropy becomes identical to a (huge)
number

SBH =
X
i=1;2

NEi
NMi

=: N

N = total number of cells contained in the doublet
of dual brane pairs whose joint worldvolume forms a
LATTICE.

Let us conceive on such a lattice an (N � 1)-CHAIN,
i.e. a chain composed out of N � 1 successive links
where we allow all links to start and end on an arbitrary
cell
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! Number of chains = NN.



Motivation to consider LONG CHAINS:

uncertainty in space-resolution (cells) leads to an un-
certainty in energy

�E '�P ' 1

lDp
= (�Dp)

1

p+1 =
1p

�0(gs(2�)p)
1

p+1

:

! temperature associated with �E of order the
HAGEDORN-temperature (gs ' 1). From weakly
coupled string-theory we know that it is entropically
favourable to allocate energy of system to one single
long string.

Counting of chains up to now classical: all cells dis-
tinguishable

QUANTUM feature: cells should better be regarded
as indistinguishable bosonic d.o.f.

! account for this by dividing through the GIBBS-
CORRECTION factor N !

! quantum-mechanically corrected number of di�er-
ent N � 1 chains


(N) =
NN

N !

! Entropy of chain-states in the thermodynamic large
N limit using Stirling's approximation, ln(N !) = N lnN�
N +O(lnN)

S = ln
(N) = N � SBH :

up to O(lnN)
! ENTROPY OF CHAIN-STATES gives exactly the
BH-ENTROPY of the D=4 spacetime



Corrections to BH-Entropy

Corrections to BH-entropy for D=4 black holes have
been determined in supersymmetric cases from String-
Theory while results in non-supersymmetric cases came
from Quantum Geometry or the CFT approach of
Carlip

General result: LOGARITHMIC CORRECTION

�k lnSBH
with constant k > 0 (negative correction can be traced
back to holographic principle)

CFT APPROACH:

By determining corrections to Cardy formula one ob-
tains an entropy

S = SBH � 3

2
lnSBH + ln c+ const

for a class of D=4 black holes where central charge c
is given by

c =
3AH

2�G4



�
;

with � = black hole's surface gravity,  an undeter-
mined periodicity parameter.

If one assumes that  can be chosen such that c is
independent of AH then k = 3=2. However, it has been
demonstrated (J.Jing, M.L.Yan, Phys.Rev.D63(2001)
24003) that

 = 2�TH = �



with TH = �
2�

= Hawking-temperature. This gives
ln c = lnSBH + const and thus k = 1=2

S = SBH � 1

2
lnSBH + const

CHAIN-STATE APPROACH:

Let us see what corrections we obtain from count-
ing chain-states. Corrections to chain-entropy are ob-
tained from a more accurate approximation of N ! by
the STIRLING-SERIES, e.g.

N ! =
p
2�NNNe�N

�
1+

1

12N
+O� 1

N2

��
:

With SBH � N we get the corrected entropy formula

S =ln
(N)

=N lnN � ln(N !)

=SBH � 1

2
lnSBH � ln

p
2� � 1

12SBH
+O� 1

S2BH
�

� gives expected leading logarithmic correction and
agrees with k = 1=2

� Higher order corrections easily obtainable



Summary and Conclusion

� Long chain-states on Euclidean doublets of dual
branes can account for exact BH-entropy w/o �x-
ing overall proportionality constant or relying on
supersymmetry

� Corrections easily obtained from higher orders of
Stirling series and in qualitative (log. correction)
and quantitative (k = 1=2) agreement with re-
sults from CFT approach

� Requires a \mapping" of dual brane doublets
wrapped on an external S2 to speci�c D=4 space-
times via explicit supergravity solutions sourced
by the branes

(D=4 Spacetime)� (Compact internal Space)

with

S2 � S2H

E.g. two doublets of Euclidean D3�D3 pairs give
the D=4 Schwarzschild Black Hole (a.k.a. the ul-
tra non-extreme black 6-brane).


