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Introduction |

CP violation is one of the central aspects
of low energy phenomenology

CP is violated in
— K—system

— B—system

— during the evolution of the universe

String theory must explain its origin

In string theory CP is a gauge symmetry

—— has to be broken spontaneously

Natural candidates:

S,T; , other moduli



Phenomenological Constraintsl

e Low—energy physics requires the Cabibbo-
Kobayashi-Maskawa CP phase to be order
one

e If we are to have low energy supersymme-
try, one must make sure that the SUSY
CP phases are very small as required by
the fermion EDMs

e Other constraints:
— dilaton is stabilized at ReS ~ 2
— TeV SUSY particle masses

— no FCNC

e Observation: very difficult to reconcile
the first two requirements.



e [he “String CP Problem™:

EDMs appear if the soft breaking param-
eters (or the u-term) are complex:
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Some of them can be made real if the
SUSY breaking fields do not break CP
(ImFS7T:O):
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Here K and W are the Kahler potential
and the superpotential:

K =K+ Kqp*¢*+ (ZH1Ho + h.C.)
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Yet, even if all of the SUSY breaking pa-
rameters are real while the A-terms are
non-universal (A #= 1), the problem
still exists:
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A quark superfield rotation to the physical
basis (where the quark masses are diago-
nal) necessarily contains complex phases,
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T his induces CP phases in the A-terms in
the physical basis since they transform as
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Thus, CP violation leaks from the SM
Yukawa couplings into the SUSY sector.

To suppress it, we need flavor—universal
A-terms.



Heterotic Orbifold Models|

Modular symmetry:
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Gaugino condensation:
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Kahler potential:
K=—-InY -3In(T+1T),
where Y = 5 + 8 4 25655 In(T + T).

Scalar potential:
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where G = K + In(|[W]?).

SUSY breaking F-terms:
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The vacuum values of the modulus 7' and
the dilaton S are found by minimizing the
scalar potential

Need CP—violating T' and S, and ReS ~2

Problem: a single gaugino condensate leads
to S =

There are a few ways to fix that:

— multiple gaugino condensates:
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— nonperturbative Kahler potential:
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With an appropriate choice of the gauge
group, etc., each of these options leads
to ReS ~ 2

Another problem: T at the minimum is
always real

Need to generalize the superpotential. One
of the possibilities:

W — W x H(T)
H(T) = [§(T) — 1728]25(T)3P [j(T)]

Complex T' becomes possible

Does it lead to the CKM phase ?



The CKM Phase |

We will require the CKM phase to appear
at the renormalizable level

Complex T or S and Yukawa couplings do
not imply a non-vanishing CKM phase

Yukawa couplings obey string selection rules.
Yf1f2f3 is allowed only if

— 016503 =I
— (I -01)f1 + A —-02)f> + (I —-03)f3 =0

These are very restrictive. For prime orb-
ifolds, given two fixed points, the third
one is found uniquely. Thus, the textures
are
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In prime orbifolds the CKM phase is zero
at the renormalizable level

The situation is better in non — prime or-
der orbifolds since the space group selec-
tion rule is not diagonal

Example: Zg-1, 66263 coupling is allowed
it f1lsuz)= folsu(s)

A non-trivial CKM phase can be produced
if the Jarlskog invariant does not vanish

J = Im (det|yuyul, ydydt| )
The Yukawas are calculated in terms of T
via
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e Modular properties of the Jarlskog in-
variant J:

Since
Y (fo— f3:T+1i) =Y (fo — f3; T) e¥f2)i0(f3)

J is invariant under the axionic shift. Then,

JIY(T)] = —-J Y ()] = —J [Y(T})] = T [Y(T3)]

So, J vanishes at the fixed points and at
ImT; = +1/2.

0.25

e T hus, one must avoid the fixed points
INn realistic modaels.
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e [ his argument does not apply to the du-
ality transform T'— 1/T since it is not an
explicit symmetry of the SM sector

e [ his can be shown by Poisson resumma-
tion of the Yukawas

> expl-m (m + 5)TA (m + )]
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e [ hus J generally does not vanish on the
unit circle
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SUSY Breakingl

e [ he SUSY breaking parameters are given
by

1
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A = F"[Km+ 0mInY,s,
1/~ o~ \—1/2
B = i (KyKy,) [(2m3 5 + V0)Z
— m3/2ﬁmﬁmZ
+ m3oF™ (0mZ — Z O In(Kpy, Kpy,))

- _ - _ . \—1/2
i = (mzpnZ-F"052) (Ky, Kp,)
where
N _ 1
Ro = (T+T)™, Z= _

e The physical SUSY CP phases are Arg((Bup)*uM )
and Arg(A*M)
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e The physical phases Arg((Bp)*nuM) and
Arg(A*M) are modular invariant since
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1
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S

under the duality transform.

e We need to make sure that
— these phases are (almost) zero

— A—terms have no flavor dependence

e At the same time, T" must be complex
and away from the fixed points

e [ his can only be achieved if
- FT — O
— FS —real
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Racetrack scalar potential with H and m=1, n_=0. T
is set to its minimum value, T, = 0.9850e°->471i The
minimum in S is at Sy, = 2.13 — 0.924.
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Racetrack scalar potential with H# and m=1, n=0. S
is set to its minimum value, 2.13—0.92i.The minimum
in T is at Ty, = 0.9850e0-54717,
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e For m,n > 0, if we require CP violation,
we get

Mg ~ 1071 —1@GeV,
ma ~ ix 10% GeV (tachyonic),

Aagy ~ 103 GeV
i ~ 10%GeV
Bii ~ 10%, GeV
Arg(Mg) = 2.147,
Arg(Aq.py) = —1.387,
Arg(p) = —0.041,
Arg(Bp) = O

e [ his is unacceptable

e However, for m,n < O the situation im-
proves. T he superpotential is singular at
the fixed points in this case
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e m,n are not arbitrary

e Since at T"' — oo

n(T)_l N 671'T/12,
Jj(r) — 2™,

if we are to achieve modulus stabilization,
we need

m n 1
_ _>__
2+3 4

e The superpotential has poles at T = 1,e+i7/6
such that the minima are repelled from
the fixed points

e [0 achieve dilaton stabilization and dila-
ton dominated SUSY breaking, we use
the non-perturbative Kahler potential

e [ his set-up possesses an axionic symme-
try S — S 4+ 2 which means that the CP
phases of S and Fg are unphysical
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Scalar potential with égs =0 and m = —15,n = — 3.

T is set to its minimum value, 1y, = 1.38 + 0.36z.
The minimum in S is at Syin = 1.75.

1.38

Scalar potential with égs =0 and m = —7-,n = — &

=
S is set to its minimum value, Sy, = 1.75. The mini-
mum in 7' is at 1,,;, = 1.38 4+ 0.36z.
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Up’s:

order 1 CKM phase

no SUSY CP phases

TeV SUSY breaking masses

dilaton is stabilized at ReS ~ 2

Down’s:

tree level p is too small

possible charge breaking minima

hard to achieve radiative EW symmetry
breaking

19



COI’IClUSiOﬂSI

e heterotic orbifolds can provide a semi—
realistic picture of CP violation

e they also provide important clues concern-
ing a solution to the SUSY CP problem

e yvet there are phenomenological issues to
be addressed
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