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Abstract

We propose a supersymmetric extension of the standard model which does not
have a “µ” supersymmetric Higgs mass parameter. The matter content of the MSSM
is extended with three additional chiral superfields: one singlet, an SU(2) triplet and
a color octet, and an approximate U(1)R symmetry naturally guarantees that tan β
is large, explaining the top/bottom quark mass hierarchy. Unlike in the MSSM,
there are significant upper bounds on the masses of superpartners, including an
upper bound of 114 GeV on the mass of the lightest chargino. However the MSSM
bound on the lightest Higgs mass does not apply.

1 The �µSSM and its low energy spectrum

In the Minimal Supersymmetric Model (MSSM) there is a supersymmetric Higgs mass pa-
rameter, “µ”, which must be of order of the electroweak scale for successful phenomenol-
ogy. The difficulty of generating the correct mass scale for this supersymmetric mass
parameter is the so called “µ problem”. This problem is more severe in gauge mediated
supersymmetry breaking (GMSB) models, since it is quite difficult in gauge mediation
to induce a µ parameter which is naturally related to supersymmetry breaking, without
inducing an excessively large Bµ parameter [1].

We consider an alternative solution to the µ problem, by building a viable model which
does not have a µ parameter. In order to obtain a spectrum of superpartner masses ex-
perimentally acceptable without µ we have to add some matter content to the MSSM.
This model, which we call the “µ-less Supersymmetric Standard Model” (�µSSM), has
an approximate U(1)R symmetry which guarantees naturally large tanβ, explaining the
top/bottom quark mass hierarchy, and suppresses dangerous supersymmetric contribu-
tions to anomalous magnetic moments, b→ sγ, and proton decay.

The �µSSM can naturally arise from either gauge or gravity mediation [2], if the su-
persymmetry breaking sector respects an approximate U(1)R symmetry. Such an approx-
imate symmetry can easily arise by accident, as a consequence of the absence of gauge
singlet chiral superfields with F−terms in the supersymmetry breaking or mediation sec-
tor.

We start with the principle that all mass terms arise directly either from electroweak
symmetry breaking or from supersymmetry breaking. We therefore do not allow a su-
persymmetric µ term or any supersymmetric mass term. The MSSM without a µ term
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Figure 1: Lighter chargino masses for hT = 1, tanβ = 60 and m̃2 =5 GeV.

would have charginos lighter than the W boson, which should have been found at LEP
II, so we have to extend the theory.

In the exact U(1)R symmetric limit there are no supersymmetry breaking Majorana
gaugino masses, so in order to give the gauginos Dirac masses we add three chiral super-
fields, namely a color octet O, a triplet under the SU(2) gauge group, T and a singlet
S. These adjoint matter multiplets could have an extra dimensional origin, since extra
dimensional theories in which gauge bosons live in the bulk and chiral matter fields live
on a three brane typically have additional matter fields in the adjoint representation when
described four dimensionally, unless the extra dimension is orbifolded. The adjoint fields
might be N = 2 superpartners of the gauge fields [3].

We now turn to a discussion of the spectrum of the �µSSM, from the bottom up. The
charge assignments of some of the components of Higgs and electroweak gauge fields under
the unbroken U(1)R are:

ΨH1 ΨH2 Ψ±
T H1 H2 λ±

1 -1 -1 2 0 1
(1)

Thus we can add the superpotential coupling

∫
d2θ hSSH1H2 + hTH1TH2 . (2)

U(1)R charges are also assigned to quarks and leptons to allow the usual MSSM superpo-
tential couplings.
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Scalar trilinears involving the T scalar are potentially troublesome, because they could
induce a tadpole for T , which would get a vev and lead to a large electroweak T parameter.
Sufficient suppression of this tree level contribution is provided by the approximate U(1)R
symmetry and by a heavy mass for the T scalar, which is automatic in the gauge mediated
models.

Now the chargino mass matrix is

Ψ+
T −iλ+ Ψ+

H2

Ψ−
T 0 M̃2 −hT v1

−iλ− M̃2 m̃2

√
2mW sβ

Ψ−
H1

hT v2
√
2mW cβ 0

(3)

where M̃2 (m̃2) is a soft supersymmetry breaking Dirac (Majorana) mass term. Note that
all the charginos can be made heavier than 104 GeV without a µ parameter.

With the U(1)R symmetry unbroken, m̃2 = v1 = cβ = 0. This will get modified
slightly by small U(1)R breaking effects, which will get us away from the limit tanβ → ∞
and set tan β to a moderate value ∼ 60. In this limit there is one chargino with mass M̃2

and another chargino whose mass decreases with M̃2. To obtain masses for all charginos
heavier than 104 GeV, while assuming hT < 1.2, M̃2 must be in the range 104-120 GeV.
Moreover, the requirement, that all charginos should be heavier than 104 GeV leads to a
lower bound on the Yukawa coupling, hT >∼ 1. Note that

√
2mW = 114 GeV is an upper

bound on the mass of the lightest chargino. Thus in the region where all charginos are
heavier than 104 GeV we have two charginos with mass between 104 and 120 GeV and
one heavier one. We show in Fig. 1 the lighter chargino masses as a function of M̃2.

The neutralino mass matrix is:

Ψ3
T ΨS −iλ′ −iλ3 Ψ1

H1
Ψ2

H2

Ψ3
T 0 0 0 M̃2 hT v2/

√
2 hT v1/

√
2

ΨS 0 0 M̃1 0 hS v2/
√
2 hS v1/

√
2

−iλ′ 0 M̃1 m̃1 0 −mZ sW cβ mZ sW sβ
−iλ3 M̃2 0 0 m̃2 mZ cW cβ −mZ cW sβ
Ψ1

H1
hT v2/

√
2 hS v2/

√
2 −mZ sW cβ mZ cW cβ 0 0

Ψ2
H2

hT v1/
√
2 hS v1/

√
2 mZ sW sβ −mZ cW sβ 0 0

(4)
In the large tan β, U(1)R symmetric limit the masses become approximately Dirac.

There is always a nearly Dirac neutralino with mass lighter than the Z. In Fig. 2 we show
the neutralino masses as a function of the soft mass term M̃1, for hT = 1 and hS = 0.1.
In principle the Yukawa coupling hS is a free parameter, but large values are disfavored
by electroweak precision measurements.

Similarly, gluinos get a supersymmetry breaking Dirac mass term by mixing with
the fermionic component of the color octet O. The scalar superpartners receive soft
supersymmetry breaking masses as usual. A very small scalar µB term of order a few
GeV2

µBH1H2 (5)

will be needed in order to induce a small vev for H1, which gives the leptons and down-
type quarks mass. It is natural for this term to be small as it breaks the approximate
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Figure 2: Neutralino masses as a function of M̃1, for M̃2 = 104 GeV, hT = 1, hS = 0.1,
tan β = 60 and m̃1 = m̃2 =5 GeV.

U(1)R symmetry. Because the symmetry is explicitly broken rather than spontaneously
broken, there is no light pseudoscalar.

The MSSM bound on the lightest Higgs mass does not apply, though, since the scalar
sector is also enlarged by the scalar components of the SU(2) triplet and scalar chiral
superfields, and there are new, F−component contributions to the Higgs quartic coupling.
There will still be some upper bounds, computed in general models with Higgs triplets in
refs. [4].

2 U(1)R Symmetric Gauge Mediation

We assume that supersymmetry breaking is transmitted to the �µSSM by Gauge Mediated
Supersymmetry Breaking (GMSB), and a messenger sector of heavy supermultiplets in a
vector-like representation of the standard gauge group. In conventional gauge mediation,
the messengers learn about supersymmetry breaking from coupling to a gauge singlet with
an F−term. This transmits both supersymmetry breaking and U(1)R symmetry breaking
to the MSSM. Since we want an approximately U(1)R symmetric �µSSM, we will assume
the messenger sector does not contain any singlet. Instead supersymmetry breaking in
the messenger sector is primarily mediated by some new gauge group also carried by the
messengers. Such mediation will primarily induce nonholomorphic scalar supersymmetry
breaking masses in the messenger sector [5, 6].

We assume the usual messenger matter content of chiral superfields L, L̄,D, D̄ where
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L, L̄ transform under SU(2)⊗U(1) in conjugate representations and D, D̄ carry color. In
order to obtain Dirac gaugino masses, S, T and O must couple to the messengers. The
messenger superpotential is

λSSL̄L+ λ′SSD̄D + λTT L̄L+ λOOD̄D +MLL̄L+MDD̄D . (6)

The supersymmetric mass parameters ML and MD, which can be dynamically generated
[6], are much heavier than the weak scale.

The mass matrix for, e.g. the L, L̄ scalar fields will have the following form

(
M2

L + m̃2
L 0

0 M2
L + m̃2

L̄

)
(7)

where m̃2
L, m̃

2
L̄ are soft supersymmetry breaking masses. With no messenger singlet, to

leading order the messenger sector will accidentally have unbroken U(1)R symmetry, and
no Majorana gaugino masses will be produced. However, at one loop, the gauginos couple
to the fermionic components of T,O and S and get a Dirac supersymmetry breaking mass.

Note also that provided the D−type masses are generated by new gauge interactions
whose generators are orthogonal to electroweak hypercharge, i.e. Tr TY Tnew = 0 , the
disaster of generating a D-term for hypercharge at one loop is avoided.

There are two diagrams contributing to Dirac gaugino masses, which cancel in the
limit that M̃2

L,D = M̃2
L̄,D̄. In the limit that the supersymmetry breaking terms are much

smaller than ML, the Dirac masses M̃2,3 are

M̃2,3 = SL,D
g2,3λT,O

4π2

m̃2
L̄,D̄ − m̃2

L,D

ML,D
. (8)

where SL,D are the Dynkin indices of the L,D representations respectively. Similarly, M̃1

will receive contributions from both L and D.

The masses of scalar �µSSM particles may be found as a special case of the general
expressions computed in [7]. Note that obtaining positive squark and slepton masses
will require negative supertrace in the messenger sector. As a consequence, the scalar
components of T, S, and O will receive a large positive mass squared at one loop and will
therefore be significantly heavier than the other superpartners. This mass is of order a
loop factor times the soft masses in the messenger sector, and is not suppressed by the
messenger mass scale. The T and O scalar masses should not be much larger than 104

GeV, or they will give excessive two loop contributions to squark and slepton masses. The
supersymmetry breaking terms in the messenger sector should therefore not be larger than
of order MS ∼ 105 GeV. Since squark and slepton masses will be of order (α/π)(M2

S/M),
the messenger mass scale M should be below 106 GeV.

The �µSSM avoids the gauge mediated µ problem, because a µB parameter can be
induced which is proportional to a small coupling, and it is not a problem that the
resulting µ parameter will be much smaller than the weak scale.
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3 Contribution to precision electroweak parameters

3.1 T parameter

The superpotential couplings hTTH1H2 and hSSH1H2 break custodial SU(2) symmetry
and thus can lead to potentially large one-loop effects in the T parameter. Although the
oblique approximation is not appropriate for light superpartners, we shall interpret our
results for the T parameter as an order of magnitude estimate of the radiative corrections
expected in the �µSSM.

We find that the leading contribution to the T parameter grows as h2
T log(h2

T v
2/µ2)

and it is therefore very sensitive to the exact value of the coupling hT . Recall that there
is a lower limit on this coupling from chargino masses. Although the singlet coupling hS

also contributes to the T parameter, its contribution is negligible provided hS <∼ 0.1 1.

From a global fit of the electroweak precision data one obtains T = −0.02±0.13(+0.09),
where the central value assumes MH = 115 GeV and the parentheses shows the change
for MH = 300 GeV [8]. This bound can be relaxed for larger MH , leading to T <∼ 0.6
at 95% CL [9]. If we impose the kinematic limit from LEP II that charginos should be
heavier than 104 GeV, hT ∼ 1 and the contribution to the T parameter is huge, ∼ 2.7.
However if the actual bound on chargino masses in this model were somewhat lower, say
90 GeV, we would obtain hT >∼ 0.6 which leads to T ∼ 0.6. Therefore, given the large
sensitivity of the T parameter to the value of hT , a careful calculation of the chargino
mass bounds is crucial to determine the viability of the �µSSM model.

3.2 Muon anomalous magnetic moment

The supersymmetric contributions to aµ [10] include loops with a chargino and a muon
sneutrino and loops with a neutralino and a smuon. Explicit formulae can be found in
[2]. In the U(1)R symmetric limit, the contributions to aµ proportional to the neutralino
and chargino masses exactly vanish, and there is only a tiny effect proportional to mµ.
However, once we take into account the small U(1)R symmetry breaking effects, the
leading contribution comes from the terms with the neutralino and chargino masses, much
as in the MSSM. The contribution from chargino loops is typically dominant, except for
mL 	 mR.

In Fig. 3 we show the maximum possible value of δaµ in the �µSSM model as a function
of the soft supersymmetry breaking mass term mL (left) and as a function of tanβ (right),
for several values of the gaugino Majorana masses. Although the contribution to aµ in
the �µSSM model is also enhanced for large tan β, due to the approximate U(1)R it is
suppressed by the small gaugino Majorana masses and therefore much smaller than in the
MSSM.

1There is also a T parameter contribution from the scalar sector, but it is not enhanced by the log µ2

term, and can be made very small by the soft supersymmetry breaking scalar masses.



6: Supersymmetry and Superstrings 1341

-5

0

5

10

15

20

25

200 400 600
10

11

12

13

14

15

16

17

18

19

20

30 40 50 60

Figure 3: Maximum value of δaµ × 1010 as a function of mL and tanβ, for m̃1 = m̃2 = 0
(dashed-dotted), 5 GeV (dashed) and 10 GeV (solid). We have taken A = 0, mR = 100
GeV, M̃1 = 100 GeV, M̃2 = 110 GeV, hT = 0.8, hS = 0.1, tanβ = 60 (left) and mL =
100 GeV (right). The shadowed areas correspond to 1σ (dark-green) and 2σ (light-yellow)
allowed regions from the g − 2 collaboration result.

4 Unification of couplings

One rational for supersymmetry is coupling constant unification. If we add matter to the
MSSM in incomplete multiplets under the unifying group the usual successful prediction
of s2W ≈ .23 may be lost. In the �µSSM we have added matter in the adjoint representation
of U(1) ⊗ SU(2) ⊗ SU(3), which will not preserve the usual prediction. It is, however a
simple matter to embed the T, S and O fields into a complete adjoint multiplet of a GUT
such as SU(3)3 or SU(5).

Although it is not necessary, the other fields of the multiplet can serve as the messenger
fields of a gauge mediated model [2]. If one assumes all the �µSSM superpartners are at
the weak scale, and computes the one-loop running neglecting threshold effects, one can
fit the scales of the new matter multiplet and GUT to the low energy gauge coupling
constants. The result is

Mnew = Mweake
2π
3

(
12
α2

− 5
α1

− 7
α3

)

(9)

MGUT = Mweake
5π
6

(
3

α2
− 1

α1
− 2

α3

)
. (10)

By taking values for the coupling constants at the edge of their allowed ranges, e.g. α(MZ)
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= 1/127.7, αs(MZ) = 0.122, and s2W = 0.233 the additional matter fields can be as heavy
as 3 × 107 GeV and the GUT scale as high as 1018 GeV. Threshold effects at the GUT,
messenger and �µSSM scales and higher loop corrections make order one changes in these
predictions. This constraint is less stringent than the upper bound on the messenger scale
found in section 2.
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