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In order to gain insight into the structure of quantum field theory, one often couples
relevant composite operators to external fields such that functional differentiation w.r.t.
these fields yields Green functions of the respective operator. A particular variant of
this method consists in replacing the coupling constant by a local coupling field. The
corresponding composite operator is the local, i.e. non-integrated interaction vertex whose
study opens direct access to nonrenormalization theorems [1, 2]. Simultaneously, this
operator is related to the supercurrent through the superconformal trace identity, i.e. the
conformal anomaly can be written in terms of functional differential operators involving
the local coupling. In this article, we mainly concentrate on the case of SQED.

The local coupling is a dimensionless chiral superfield η which in the limit of constant
coupling corresponds to η = η̄ = 1

2
g−2 [2]. We also use the abbreviation G = (η + η̄)−1/2.

The gauge transformations of the gauge superfield Φ and the matter fields A± are given
by

δλΦ = iG
−1(λ− λ̄) , δλA± = ∓iλA± . (1)

The classical gauge field kinetic action reads

IΦ =

∫
d6z ηF αFα +

∫
d6z̄ η̄F̄α̇F̄

α̇ (2)

with Fα = D̄2Dα(GΦ). For constant coupling, this becomes g-independent. We have the
relation (∫

d6z
δ

δη
−

∫
d6z̄

δ

δη̄

)
IΦ = 0 , (3)

therefore it makes sense to require an analogous relation for the vertex functional. For
the gauge fixing we choose

Igf =

∫
d8z G−2D̄2(GΦ)D2(GΦ) , (4)

in addition we include a mass term for the gauge field in order to avoid infrared problems.
The total classical action

Γcl = − 1
256

(∫
d6z ηF αFα +

∫
d6z̄ η̄F̄α̇F̄

α̇

)
+ 1

16

∫
d8z

(
Ā+e

GΦA+ + Ā−e−GΦA−
)

+ Igf +
1
16
M2

∫
d8zΦ2 + 1

4
m(s− 1)

(∫
d6z A+A− + c.c.

)
(5)
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has a further symmetry,

W 3Γcl = 0 , W 3 = i

∫
d6z

(
A+

δ

δA+
+ A−

δ

δA−

)
+ c.c. (6)

We use the method of algebraic renormalization together with the BPHZL subtraction
procedure, in the generalization for superfields [3]. The breaking of gauge invariance is
linear, such that the gauge condition

w(λ)Γ = − i
128α

D̄2D2(G−2D̄2(GΦ)) +
i

8
M2

�
nD̄2(G−1Φ) (7)

w(λ) ≡ iD̄2

(
G−1 δ

δΦ

)
− iA+

δ

δA+
+ iA−

δ

δA−
(8)

can be established also in higher �-orders.

For constant coupling, the Callan-Symanzik equation expresses renormalizability of the
theory, (

µ∂µ + β
∂

∂g
− γΦNΦ − γANA

)
Γ = soft , (9)

where µ runs over all mass parameters and NΦ, NA are counting operators for the gauge
resp. matter fields. When we pass over to a local coupling, the obvious generalization of
the anomalous dimension term for the matter fields is

∑
k

γ
(k)
A g2k�

k

∫
d6z

(
A+

δ

δA+
+ A−

δ

δA−

)
−→

∑
k

∫
d6z γ

(k)
A G2k

�
k

(
A+

δ

δA+
+ A−

δ

δA−

)
,

(10)
where g is replaced by G. But the right-hand side of (10) is not supersymmetric, simply
because G is a real superfield and the integral extends only over chiral superspace. So we
run into the problem that there is no obvious possibility to formulate a Callan-Symanzik
equation for the model with local coupling due to the presence of chiral matter fields. A
possible solution to this problem has been proposed in [4]. It consists of introducing an
additional external real field L such that the W 3-symmetry is gauged. However, since
this contains a γ5-transformation of the electron field, there is a one-loop anomaly which
we express in terms of the operator

Bloc
Φ ≡ δ

δη
+ 1

2
D̄2

(
G2Φ

δ

δΦ

)
. (11)

Thus our additional gauge Ward identity reads

w̃3Γ ≡
(
A+

δ

δA+

+ A−
δ

δA−
− D̄2 δ

δL
+ 2β(1)�Bloc

Φ

)
Γ = soft , (12)

where “soft” includes soft contributions from the mass and gauge fixing terms. In order
to prove this Ward identity, one has to use Zimmermann identities for the mass and gauge
fixing terms and use the commutation relation [w̃3(z), ¯̃w3(z′)] = 0.
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From the WI (12) we derive another chiral WI [6]:

wKΓ + 2β(1)�
(
D2Bloc

Φ − D̄2B̄loc
Φ

)
Γ + i∂aV K

a · Γ = soft (13)

with

wK = D2

(
A+

δ

δA+

+ A−
δ

δA−

)
− D̄2

(
Ā+

δ

δĀ+

+ Ā−
δ

δĀ−

)
(14)

V K
a = 2iσαα̇

a [Dα, D̄α̇]
δΓeff
δL

. (15)

(13) describes a chiral transformation of the matter fields which is broken by a 1-loop
anomaly.

With the help of the real external field L it is possible to establish a Callan-Symanzik
equation also in the case of local coupling,

(
µ∂µ − β(1)�BΦ +BA

)
Γ = soft (16)

with

BΦ =

∫
d6zBloc

Φ +

∫
d6z̄ B̄loc

Φ , (17)

BA =

∫
d6zBloc

A +

∫
d6z̄ B̄loc

A , Bloc
A = 1

2

∑
r,s

γ
(r,s)
A �

rD̄2

(
G2rLs δ

δL

)
. (18)

The operator BA represents here all dilatational anomalies arising from the presence of
chiral fermions. Since Bloc

A should commute with w̃3, the coefficients γ
(r,s)
A obey certain

restrictions.

In the limit of constant coupling, η → 1
2
g−2, and for L = 0, the contribution of BA

may be rewritten using the w̃3 Ward identity,

BAΓ→ −γA

(
NA + 2β

(1)
�BΦ

)
Γ + soft (19)

with
γA = −1

2

∑
r

γ
(r,0)
A �

rg2r , (20)

such that the Callan-Symanzik equation for constant coupling reads

(
µ∂µ + β(1)(1 + 2γA)�g

2 (g∂g −NΦ)− γANA

)
Γ = soft . (21)

Thus the full β function is identified as

β = β(1)�g3(1 + 2γA) . (22)

The superconformal Ward identity (see [3, 5]) reads

−16wαΓ = D̄α̇Vαα̇ · Γ + 4
3
β(1)�DαBloc

Φ Γ− 4
3
DαBloc

A Γ + soft . (23)
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δΓeff

δη
may be interpreted as the g-derivative of an effective Lagrangian density, such that

in the limit L = 0, G = g = const, (23) reads

−16wαΓ = D̄α̇Vαα̇ · Γ− 4
3
β(1)�g3(1 + 2γA)∂gLeff · Γ + soft

+ 2
3
β(1)�g2(1 + 2γA)DαD̄

2

(
Φ
δΓ

δΦ

)
+ 4

3
γADα

(
A+

δ

δA+

+ A−
δ

δA−

)
Γ . (24)

The second line contains anomalous dimensions for Φ, A+, A−. Here, the w̃3-WI (12)
has been used to evaluate the δ

δL
-term in Bloc

A . Instead, it is also possible to rewrite the
δ

δL
-term as a current contribution and a B-breaking. Of the resulting supercurrent V ′

a

only the R part is relevant,

−16wΓ = 2i∂aV ′
a · Γ + 4

3
β(1)�(D2∆F 2 − D̄2∆̄F 2) · Γ + soft (25)

V ′
a = Va +

16
3
γAD

ασaαα̇D̄
α̇ δΓeff
δL

− 32
3
iγA∂a

δΓeff
δL

(26)

∆F 2 =

{
δΓeff
δη

+ 1
2
g2D̄2

(
Φ
δΓeff
δΦ

)}
η=

1
2

g−2

. (27)

This shows that conformal R-symmetry is broken by a one-loop anomaly if one uses the
modified current V ′

a. The breaking is identical to that of (13), therefore one can combine
both WIs to a conserved WI,

(−24w + wK)Γ = i∂a(3V ′
a − V K

a ) · Γ + soft , (28)

which corresponds to an R transformation with non-conformal weights for A+, A−: we
have n(A+) = n(A−) = −1. With these weights the matter field mass term is invariant,
therefore there is no F αFα anomaly (The Zimmermann identity for the gauge field mass
term does not produce generically chiral breaking terms).

The operator ∆F 2 defined in (27) represents a renormalized version of the term F αFα,

[∆F 2] · Γ = [− 1
256
F αFα +O(�)

] · Γ + soft mass terms . (29)

By applying Bloc
Φ to the Callan-Symanzik equation (16), we find

WD ([∆F 2(z)] · Γ) = [δD∆F 2] · Γ + (β∂g − γΦNΦ − γANA) [∆F 2 ] · Γ + soft , (30)

w(λ)(z′) ([∆F 2(z)] · Γ) = i
8α
(✷+ αM2)(δ6(z − z′)D̄2(GΦ)) . (31)

(30), (31) mean that ∆F 2 is a gauge invariant, finite operator.

To conclude this article, we briefly demonstrate how to derive a nonrenormalization
theorem for the two point function

〈
T Ā+Ā−

〉
, closely following [1]. By acting twice with

the supersymmetry Ward operator WQ
α on

∫
d4x Bloc

Φ Γ, we obtain in the limit G → g

WQαWQ
α

[∫
d4x ∆F 2

]
3

· Γ =
∫
d6zBloc

Φ Γ . (32)
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Using the chain rule and (3) this may be rewritten as

WQαWQ
α

[∫
d4x ∆F 2

]
3

· Γ = −1
2
g2 (g∂g − NΦ) Γ . (33)

We test this equation w.r.t. Ā+(z1), Ā−(z2) and take into account that the eigenvalue of
g∂g is just twice the loop order l:

−lg2 〈
T Ā+Ā−

〉
= 4(θ̄1θ̄2η

µν + iθ̄1σ̄µν θ̄2)∂
1
µ∂

2
ν

〈
T Ā+(z1)Ā−(z2)

∫
d4x ∆F 2

〉
. (34)

The superficial degree of divergence of a supergraph (lowest θ component) is given by [3]

dmin = 4− 2N +Nc +Nc̄ −
∑

ext legs

dim(ext leg) +
∑

vertices

(dim(vertex)− 4) , (35)

where N is the total number of external legs and Nc, Nc̄ are the numbers of chiral resp.
antichiral external legs. For the higher θ components one has to add 1

2
for each θ or θ̄,

d = dmin +
1
2
ω . (36)

For the left and right hand sides of (34) we find the degrees

dleft,min = 0 , dright,min = −1 . (37)

Since the r.h.s. of (34) contains two explicit θs, we have ωleft = ωright + 2 and therefore

dleft =
1
2
ωleft , dright =

1
2
ωleft − 2 , (38)

i.e. the degree of divergence is improved by two.
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