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Abstract

Geometrical transitions are powerful tools designed to study strong coupling

e�ect in a general class of N = 1 theories realized on type IIB D5 branes wrapping

2-cycles of local Calabi-Yau threefolds or as e�ective �eld theories on D4 branes in

type IIA brane con�gurations. In this notes we discuss the issue of the classical

moduli space for N = 2;
Qn

i=1 U(Ni) theories deformed by a general superpotential
for the adjoint and bifundamental �elds. We investigate the geometric transitions in

the ten dimensional theories as well as in M-theory. Strong coupling e�ects in �eld

theory are analyzed in the deformed geometry with uxes. The connection between

the geometrical transition and strong coupling results constitutes a background for

the methods of the Dijkgraaf-Vafa approach, where nonperturbative results in �eld

theories can be studied by using perturbative results in matrix models.
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1 Geometric Transitions

One of the most exciting directions developed in string theory and �eld theory in of the last
few years was to considerer the duality between open strings (�eld theory) and the closed
string (supergravity). The by-now classical example of such dualities is the Maldacena
conjecture [1] between closed strings propagating on AdS spaces and conformal �eld
theories (see [2] for some more recent developments).

The same idea appeared in the context of topological theories and was pursued by
Gopakumar-Vafa in studying the duality between Chern-Simons theories on S3 cycles
and closed topological strings on the resolved conifold [3]. The topological transition
was lifted to a type IIA transition by Vafa, in the seminal paper [4] where it becomes
a geometric transition between D6 branes on the S3 of the deformed conifold and type
IIA strings on the resolved conifold, with uxes. After a geometric transition of the
non-singular Calabi-Yau threefold to another non-singular Calabi-Yau threefold, the D-
branes disappear and they are replaced by RR and NS uxes through the dual cycles,
the �eld theory being described in the large 't Hooft parameter region. It is diÆcult
and cumbersome to generalize the type IIA picture, this is because not much it is known
about the Chern-Simons theory for more complicated geometries (nevertheless see [5] for
a worldsheet proof of the transition, which is based on the type IIA picture or [11, 12, 13]
for developments of the type IIA picture).

The type IIB picture can be obtained as a mirror symmetric picture. The transition
becomes one between D5 branes wrapped on the P 1 cycle of the resolved conifold and
type IIB on the deformed conifold with uxes. Even though it was on less �rm ground
as compared with the type IIA transition, the type IIB picture has been extensively
extended to a large class of geometric transition dualities, for geometries which are more
complicated than the conifold [14, 15, 16, 17, 19, 20, 21, 22, 23].

More recently, the type IIB geometric transition has become the backbone for a very
powerful development, which relates the �eld theories and matrix models. This is the
Dijkgraaf-Vafa procedure [6, 7, 8] which uses �eld theory, geometry and matrix model as
a triangle, where the most important side of the triangle is the one connecting matrix
models and �eld theories. The statement becomes that perturbative results in the matrix
models (in the large N limit, when only planar diagrams contribute in matrix model) give
information about the non-=perturbative e�ects in the �eld theory. The subject is now
extensively studied and the list of references is becoming very large (some other important
papers are [9, 10]).

In the next section I shall discuss our contribution to the study of the geometric
transition, by using an approach based on brane con�gurations and their lift to M the-
ory [19, 20, 21, 22]. In the last section I shall outline possible connections between our
approach and other recent lines of research, and point out some possible future develop-
ments.
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2 Geometric Transition from MQCD Dynamics

In this section we present our method on dealing with the geometrical transition, in the
type IIB approach. The main procedure is to consider N = 1 geometries

xy � u
nY

p=1

 
u�

pX
i=1

W 0

i (v)

!
= 0: (1)

(where Wi are polynomials of v), wrap D5 branes on the di�erent P 1 cycles and take the
T-duality along the U(1) direction of a natural C� action on the N = 1 geometry (1)
given by

� � (x; y; u; v)! (�x; ��1y; u; v) for � 2 C
�: (2)

This T-duality gives the dictionary between the geometric engineering construction and
the Hanany-Witten type brane construction [24].

The details of the T-duality map is as following

� the D5 branes on the P 1 cycles become D4 branes on intervals as U(1) acts along
the angular direction of the P 1's

� the NS branes appear when the U(1) orbits degenerate. When the NS branes are
projected onto the u� v plane, they will be a collection of the holomorphic curves given
by

u
nY

p=1

 
u�

pX
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W 0

i (v)

!
= 0; (3)

� if we start in the �eld theory with an N = 2 which is deformed by some superpoten-
tial for the adjoint �elds, there will be a number of gauge groups in the N = 1 theories.
The above number of intersection points is in one-to-one correspondence with the N = 1
gauge groups.

2.1 The simplest example : The conifold

Consider an action Sc on the conifold given by xy � uv = 0 as:

Sc : (ei�; x)! x; (ei�; y)! y (ei�; u)! ei�u; (ei�; v)! e�i�v; (4)

The orbits of the action Sc degenerates along the union of two intersecting complex lines
y = u = v = 0 and x = u = v = 0 on the conifold. This action can be lifted to the
resolved conifold and deformed conifold. As discussed in [19], the T-dual picture for the
D5 branes on the �nite 2-cycle of the resolved conifold will be a brane con�guration with
D4 branes along the interval with two NS branes in the `orthogonal' direction at the ends
of the the interval, the length of the interval being the same as the size of the rigid P 1

[24, 25]. For the deformed conifold, by taking the T-duality, we obtain an NS brane along
the curve u = v = 0 with non-compact direction in the Minkovski space which is given by

xy = � (5)
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in the x-y plane.
The above is thus the brane constructions for a conifold, resolved conifold and deformed

conifold. Now to study Vafa's duality we appeal to Witten's MQCD construction [26].
We denote the directions of the two NS5 branes along x0;1;2;3;4;5 and x0;1;2;3;8;9 respectively.
The D4 branes are along x0;1;2;3;7.

If we lift this con�guration to M-theory, all the branes in the picture become a single

M5 brane with complicated world-volume structure. We de�ne the complex coordinates:

x = x4 + ix5; y = x8 + ix9; t = exp(�R�1x7 + ix10) (6)

where R is the radius of the 11th direction, the world volume of the M5 corresponding
to the resolved conifold is given by R1;3 � � and � is a complex curve de�ned, up to an
undetermined constant �, by

y = �x�1; t = xN (7)

Now if we consider the limit where the size of P 1 goes to zero, then the value of t on �
must be constant because � is holomorphic and there is no non-constant holomorphic map
into x1. Therefore the M5 curve make a transition from a \space" curve into a \plane"
curve. From (7), we obtain N possible plane curves

�k : t = t0; xy = � exp 2�ik=N; k = 0; 1; : : : ; N � 1: (8)

2.2 General N = 1 geometries

It is possible to generalize the above construction to general geometries, which describe SU
groups (in the absence of the orientifolds), SO=Sp theories (in the presence of orientifolds),
gauge theories with matter (by putting D5 branes on some extra non-compact P 1 cycles).

If we start from a general N = 2 A-D-E quiver theory, after deformation we get an
N = 1 A-D-E quiver theory which in the IR limit is equivalent to a pure N = 1 gauge
theory. So we expect to have gaugino condensation and mass gap as noticed in [16]. In
the large N description, the theory lives on a geometry where the P 1 cycles have shrunk
and S3 cycles have grown, together with RR uxes through the S3 cycles and NS uxes
through their dual cycles have been created.

The N = 1 geometry for the An quiver theory with general superpotential W for the
adjoint �eld is the minimal resolution of a Calabi-Yau threefold de�ned in C4 by

X : xy �
nY

p=0

 
u�

pX
i=0

W 0

i (v)

!
= 0 (9)

where W 0

0 is de�ned to be zero. The singularities are isolated and located at x = y = 0
and the intersection of any two curves in the u� v plane de�ned by

u =
j�1X
i=1

W 0

i (v); u =
kX

i=1

W 0

i (v): (10)

The singularities can be resolved by successive blow-ups which replace each singular
point by a P 1 cycle. Therefore we see that the number of P 1 cycles match the number
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of the Higgsed gauge groups. The resolved space is covered by (n+ 1) three dimensional
complex spaces Up; p = 0; : : : n with coordinates

up =

Qp
j=0

�
u�

Pj
i=0W

0

i (v)
�

x
; xp =

xQp�1
j=0

�
u�

Pj
i=0W

0

i (v)
� ; vp = v; (11)

where x0 = x. They blow down to the singular threefold (9) by

� : ~X := U0 t U2 t : : : t Un ! X; (12)

Up 3 (up; xp; vp) 7!

8>>>>>>><
>>>>>>>:
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Pp
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0

i (vp)
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(13)

where Up t Up+1 means that the three spaces Up; Up+1 are glued together by

xp+1 = u�1p ; vp+1 = vp; up+1 = xpu
2

p �W 0

p+1(vp)up: (14)

Thus the complex lines C1 de�ned by

W 0

p+1(vp) = 0; xp = 0 (15)

in Up together with the complex lines C1 in Up+1 de�ned by

W 0

p+1(vp+1) = 0; up+1 = 0 (16)

form the P 1 cycles and there are no other P 1 cycles in Up tUp+1. This is a generalization
of the A1 quiver theory considered in [14]. While the P 1 in the resolution of the An

singularity can move freely in the v-direction, the above P 1 cycles are frozen at

W 0

p+1(v) = 0: (17)

Hence the supersymmetry is broken from N = 2 to N = 1.
We then blow-down the P 1 cycles to obtain a singular geometry, which is then de-

formed by a number of S3 cycles. The deformations can be normalizable or non-normalizable,
y counting the number of normalizable and non-normalizable S3 cycles in the blown-down
geometry, we obtained that there are mn(n + 1)=2 normalizable and mn(n + 1)=2 � n
non-normalizable, the �rst one corresponding to the gluino condensates in the N = 1
theories and the latter to the vevs of the bifundamental �elds. Of course, the appearing
of the non-normalizable S3's is completely �xed by the superpotential so by the expecta-
tion values of the adjoints and bifundamentals. Having all non-dynamical deformations
�xed by expectation values of the adjoints and bifundamentals (in geometry, there are
only conifold singularities in the blown-down geometry), the N = 1 geometry (12) can go
through the geometric transition where the rigid P 1's will disappear and will be replaced
by the �nite size of S3.
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We can also discuss the Seiberg duality which takes place in the presence of quark chiral
super�elds in the fundamental representation. At present, we only have an understanding
for the massive fundamental quarks [20], which correspond to D5 branes wrapped on P 1

cycles, other that the exceptional one. Here we consider the case of massive fundamental
�elds, which will be integrated out in the infrared which changes the scale of the N = 1
theory so changes the ux on the S3 cycles. If we have massless avors, the story becomes
more complicated and we do no have yet a clear understastind (see next section for some
steps on this direction). By introducing orientifolds., one can describe the supersymmetry
breaking for the SO=Sp groups and there is no further complication due to the presence
of the orientifolds.

3 Relation to Other Approaches

Our results provide a general approach to deal with the strong coupling results in �eld
theory, by using the brane con�gurations and transitions in MQCD. As brane con�gura-
tions have been extensively studied in the literature, we expect that our method can be
used for a large class of geometrical transitions.

One important question is whether we can compare our type IIA brane con�guration
construction with other type IIA constructions as the ones in [11, 12, 13]. This would relate
our MQCD approach with M-theory curves to M-theory with G2 manifolds. Moreover,
one may be able to construct the various G2 holonomy manifolds which have been used
in M-theory lifts of the geometrical type IIA transitions.

Our type IIA picture has been obtained by taking one T-duality from type IIB picture.
Hence we need to take two more T-dualities to obtain the mirror type IIA. It would be
interesting to work out in details for the toric cases as in [11, 12, 13] to see how two
type IIA picture appear and how their M-theory transitions are related. More generally,
the geometry is not toric and there are no obvious three T-dualities one can take. In
the case of degenerate superpotential with the same degree, the geometry become quasi-
homogeneous and there is extra U(1) action. Brane con�gurations have been extensively
studied during the last years and in the present paper we extend them to more general
cases. Therefore, after two extra T-dualities we could get a rich class of G2 manifolds.

Another possibility is to relate our results to the new developments of Dijkgraaf-
Vafa. In this case, we use the fact that geometrical transitions are the background of
the matrix model/gauge theory correspondence [6, 7, 8]. The quantities to be compared
are the Seiberg-Witten curve in �eld theory, the hyperelliptic curve obtained from the
deformed geometry if this is seen as a S2 �bration and the resolvent equation in the matrix
model. Our previous discussion referred only to SU(Nc), N = 2 SUSY theories without
fundamentals, when the supersymmetry is broken to N = 1 SUSY by a superpotential
for the adjoint �eld. It is interesting to include fundamental matter in the theory and
to see the MQCD transition. The fundamental massless avors would be described in
the geometrical set-up by additional D5 wrapped on additional non-compact cycles of
the conifold or to additional D7 branes. By a T-duality, in the brane con�guration they
become D6 brane for massless avors or semi-in�nite D4 branes for massive avors.

By lifting it to MQCD and going through the transition, we should recover the moduli
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space of the �eld theory from the geometry. As the transition consist on closing the
interval between the two NS branes (so going from a curved M5 brane to a plane M5 brane
[26, 19, 20]), we expect to get a geometry described by an equation xy = a in the (x; y)
plane. But [27] tells us that the only case when the xy 6= 0 is when the mass of the N = 2
adjoint �eld is not 1. This is consistent with the fact that there is no supersymmetric
vacua for the corresponding N = 1 theory. In the case of in�nite mass for the the adjoint
�elds, after integrating it out in the matrix theory we remain with decoupled integrals
over the massless fundamental quarks (with no tree level superpotential) and, as discussed
before, this gives the ADS superpotential, which removes any supersymmetric vacua. If
the adjoint has a �nite mass, then there are additional terms in the superpotential, which
would give rise to stable supersymmetric vacua. It would be interesting to develop the
discussion for the case of �nite mass for the adjoint �eld.

As the MQCD approach should give useful information aboutb the �eld theory, the
above mentioned connections are not unexpected, but it is very interesting to see how
di�erent methods come together to give very similar results.The importance of the di�er-
ent approaches to geometrical transitions is that we can even get results beyond the �eld
theory, for the coupling with the gravity.
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