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Abstract

We describe a topological effect of certain combinations of NS-NS and RR field strength

fluxes on D-branes. Such fluxes induce the appearance of chiral anomalies on lower di-

mensional submanifolds of the D-brane worldvolume. This anomaly is not associated

to a dynamical chiral fermion degree of freedom, but rather should be regarded as

an explicit flux-induced anomalous term (Wess-Zumino term) in the action. In com-

pactifications to four dimensions, such terms modify the familiar anomaly cancellation

patterns. We describe cancellation of diverse anomalies in four-dimensional compacti-

fications with field strength fluxes and D-branes.
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1 Introduction

Compactifications of type II string theory / M-theory with field strength fluxes turned

on (see e.g. [1, 2]) provide an interesting class of constructions which may shed new light

on several questions of phenomenological relevance. For instance, construction of vacua

with warped internal dimensions, or introduction of fluxes as a canonical mechanism to

stabilize a large numbers of moduli.

Despite the recent progress in understanding the effect of such fluxes on the closed

string sector of these constructions, their effect on open strings and D-branes are poorly

understood. In this lecture we discuss one particularly easy and interesting effect. It is

important to distinguish ‘dilutable’ effects, which completely go away in the large volume

limit (for instance, effects of fluxes turned on in directions in which D-branes are localized

at a point e.g. Myers’ dielectric effect [3]), and ‘topological’ effects, which do not. The

latter are discrete and arise when fluxes are turned on cycles on which D-branes wrap.

This kind of effects are the ones discussed in the present talk.

2 Chirality from fluxes

In this section we discuss the effect of flux-induced anomaly on D-branes in the presence

of fluxes. Instead of following the original discussion in [4], we follow a more direct route.

The Chern-Simons piece of the D-brane world-volume action is roughly speaking of

the form

SDp =
∫

Dp
C ∧ eF Â(R)1/2 (2.1)

where C =
∑

p Cp is a formal sum over RR forms of all degrees, F is the world-volume gauge

field strength, and Â is the A-roof genus of the (pullback of the) spacetime curvature.

Integration selects the top-form terms in the above expression.

In the presence of RR field strengths, these terms are more properly written as

SDp =
∫

Dp
G ∧ [ eF Â(R)1/2 ](0) (2.2)

where G is a formal sum of RR fields strength tensors, and we are using Wess-Zumino

descent notation. Namely, for a closed gauge invariant form Y , we define Y = dY (0),

δY (0) = dY (1), where δ represents a gauge variation.

Expansion of the above expression leads to several important terms, which are of

topological nature, and play a fundamental role in anomaly cancellation in the presence
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of D-branes. For instance, the anomaly inflow mechanism for intersecting D-branes [5],

or the Green-Schwarz mechanism in compactifications with D-branes.

However, we should note that there exist terms beyond those written above. In par-

ticular, there are modifications to (2.1) in the presence of NS-NS 2-form field. Requiring

invariance under gauge transformations of the NS-NS form potential

BNS → BNS + dΛ ; F → F − Λ (2.3)

shows the modification is simply to replace F by the gauge invariant field strength F =

F + BNS in (2.1).

Expansion of the terms linear in BNS in (2.1) leads to an action, which written as in

(2.2), reads

SDp =
∫

Dp
G ∧ BNS [ eF Â(R)1/2 ](0) (2.4)

Our purpose is to discuss these terms and their role in diverse chiral anomalies. Upon

world-volume gauge (or spacetime diffeomorphism) transformation, the above terms suffer

a non-zero variation

δSDp =
∫
Dp G ∧ BNS δ [ eF Â(R)1/2 ](0) =

=
∫
Dp G ∧ BNS d [ eF Â(R)1/2 ](1) =

∫
Dp G ∧ HNS [ eF Â(R)1/2 ](1) (2.5)

The meaning of this is that in the presence of NS-NS and RR field strength fluxes a

gauge variation of roughly the form of a chiral anomaly develops on the D-brane world-

volume. This anomaly arises on a submanifold of the D-brane world-volume, localized

at the core of the fluxes (for fluxes without well-define core, we may say the density of

anomaly is given by the density of field strength). For instance, a coupling to be used

below is that of a D6-brane to the RR 0-form field strength λ and BNS, which leads to a

gauge variation

δSD6 =
∫

D6
λ HNS − NS [ eF Â(R)1/2 ](1) (2.6)

The field strengths induce an anomal similar to that of a four-dimensional chiral fermion.

The argument here (see also [4]) makes clear though that the origin of the anomaly is

not an underlying chiral fermion, but rather an explicit anomalous term of the D-brane

action in the presence of field strength fluxes.

In non-compact situations, the anomaly is canceled by an inflow coming from the

volume of the D-brane towards the submanifold described above. The mechanism works
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as follows. Type II supergravity contains a ten-dimensional Chern-Simons interaction

∫
X10

HNS G6−p Cp+1 (2.7)

with Cp+1, G6−p are a RR (p+ 1)-form potential and (6− p)-form field strength. It leads

to a equation of motion

dG8−p = G6−p HNS (2.8)

for the field strength dual to Cp+1.

Now using another of the couplings in (2.2), namely

SDp =
∫

Dp
G6−p ∧ [ eF Â(R)1/2 ](0) (2.9)

there is a gauge variation of the latter induced by the equation of motion (2.8), given

by

δSDp =
∫
Dp G8−p ∧ δ [ eF Â(R)1/2 ](0) =

=
∫
Dp dG8−p ∧ [ eF Â(R)1/2 ](1) =

∫
Dp G6−p HNS ∧ [ eF Â(R)1/2 ](1) (2.10)

This is interpreted [5] as an inflow of anomaly from the D-brane world-volume, of the

right form to cancel the anomaly (2.6)

3 Compactification and anomaly cancellation

In this Section we study the above anomalous term in type II compactifications with field

strength fluxes and D-branes. For simplicity we center on four-dimensional compactifi-

cations. Also, we consider compactifications containing chiral fermions, and study the

intricate pattern of anomaly cancellation in such models.

For concreteness we center on compactifications of type IIA theory on a Calabi-Yau

threefold X3 with Na D6-branes wrapped on homology 3-cycles [Πa], and NS flux HNS

turned on with total homology class [HNS], and in the presence of a cosmological constant

λ. Compactifications of this kind in the absence of fluxes have been considered in [6,

7, 8, 9, 10]. Notice that these compactifications are typically non-supersymmetric, but

supersymmetric configurations could be obtained by introducing O6-planes [10]. Study

of supersymmetric models lies beyond the scope of the present paper, which centers on

more topological aspects.
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Extending the analysis in [8], we now derive the RR tadpole cancellation conditions.

The action for the RR 7-form field is

S =
∫

M4×X3

dC7 ∗ dC7 +
∑
a

Na

∫
M4×Πa

C7 +
∫

M4×X3

λ HNS C7 (3.1)

The equation of motion is

dH2 =
∑
a

Na δ(Πa) + λ HNS (3.2)

where H2 is the field strength of the RR 1-form, and δ(Πa) is a bump 3-form on X3 with

support on Πa. The equation in homology reads

∑
a

Na [ Πa ] + λ [HNS ] = 0 (3.3)

The low energy four-dimensional theory is generically chiral, with chiral fermions aris-

ing from D6-brane intersections. The gauge group is
∏

a U(Na), and the chiral fermion

content is given by

∑
a<b

Iab( a, b) (3.4)

where Iab = [Πa] · [Πb] is the intersection number, with its sign specifying the fermion

chirality.

The anomalous terms (2.6) appear in the low-energy effective field theory as explicit

Wess-Zumino terms in the four-dimensional action. Let us be a bit more concrete about

these. A Wess-Zumino term is an explicit non gauge invariant interaction whose variation

has the structure of a chiral gauge anomaly. Since an anomaly is a gauge variation which

cannot be canceled against a local counterterm, it is clear that a four-dimensional Wess-

Zumino term is non-local (although its gauge variation is local) 1. The simplest way to

write such terms (see e.g. [11]) is to pick a five-dimensional manifold X5 whose boundary

is four-dimensional spacetime M4. The Wess-Zumino terms we need are of the form

SWZ =
∫
X5

[ eF Â1/2(R) ](0) (3.5)

By default we consider Wess-Zumino terms with gauge fields traced in the fundamental

representation. The gauge variation of (3.5) gives

δSWZ =
∫
X5

d [ eF Â1/2(R) ](1) =
∫

M4

[ eF Â1/2(R) ](1) (3.6)

1From the ten-dimensional viewpoint, though,a non-local four-dimensional Wess-Zumino term may

arise from local higher-dimensional interactions of the kind discussed above.
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In the particular configuration of D6-branes given above, the gauge factor U(Na)

associated to the ath stack of D6-branes, has a WZ term given by

SWZ,a = Ia,H

∫
X5

[ eFaÂ1/2(R) ](0) (3.7)

with Ia,H = λ [Πa] · [HNS].

In the following we study diverse kinds of anomalies and the different kinds of con-

tributions. There are three main contribution to a four-dimensional anomaly: i) The

familiar triangle diagram, with chiral fermions running in the loop, which contributes

to cubic non-Abelian and mixed anomalies. ii) The Green-Schwarz contribution to U(1)

- non-Abelian and U(1) - gravitational mixed anomalies, given by a diagram where the

U(1) gauge boson couples to a 2-form field which subsequently couples to two non-Abelian

gauge bosons or two gravitons. iii) The explicit Wess-Zumino terms (3.7). This may con-

tribute to cubic non-Abelian or mixed anomalies. We discuss the different anomalies in

turn

Cubic non-Abelian anomalies

This receives contributions from the triangle diagrams and the Wess-Zumino terms.

The total contributions to the U(Na)
3 cubic anomaly are

∑
b Nb Iab + Ia,H =

∑
b Nb [Πa] · [Πb] + λ [Πa] · [HNS]

= [Πa] (
∑

b Nb [Πb] + λ [HNS] ) = 0 (3.8)

which vanishes by using the RR tadpole cancellation condition (3.3).

Mixed U(1) - non-Abelian anomalies

This receives contributions from triangles, Wess-Zumino terms and Green-Schwarz

diagrams. The latter are mediated by the 2-forms arising from compactification of the

RR 5-form integrated over a basis of 3-cycles. The computation goes as in [8] and leads

to the result below. The three contributions to the mixed U(1)a − SU(Nb)
2 anomaly are

Atriangle
ab = Na Iab + δab

∑
c

NcIac

AWZ
ab = δab Ia,H

AGS
ab = −Na Iab (3.9)

The total contribution vanishes.

Mixed anomalies involving gauge fields from the RR closed string sector
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As noticed in [12], in compactifications with field strength fluxes there exist BF cou-

plings the mix gauge bosons U(1)RR from the closed string RR sector with RR with RR

2-forms. If the latter couple to two gauge bosons on D-brane world-volumes, there exists

a Green-Schwarz contribution to the mixed U(1)RR - non-Abelian anomaly. Since there

are no chiral fermions charged under both gauge symmetries, there is no triangle contri-

bution to such anomaly. Cancellation is hence achieved via the contribution of a suitable

Wess-Zumino term, which was there described.

In the particular example of our above compactification, there exist couplings of the

RR 1-form field with 2-forms arising from integration of the RR 5-form
∫
10d

=
∫

X10

HNS F2 C5 → ∑
i

ni

∫
M4

Bi
2 F2 (3.10)

where ni =
∫
Σi

HNS are periods of the NS 3-form over a basis of 3-cycles. This implies

that the scalars dual to those 2-forms shift under U(1)RR gauge transformations. Since

they couple to the D6-brane non-Abelian gauge bosons as

∑
i

[Σi] · [Πa]
∫

M4

φi trF 2
a (3.11)

one obtains a total U(1)X − SU(Na)
2 mixed anomaly proportional to na =

∫
Πa

HNS.

The WZ term required to cancel this contribution arises from the coupling

SCS =
∫

D6a

BNS C1 trF 2
a =

∫
D6a

BNS [F2 trF 2
a0
](0) (3.12)

Indeed, its gauge variation is

δSCS =
∫

D6a

HNS [F2 trF 2
a0
](1) = na

∫
M4

[F2 trF 2
a0
](1) (3.13)

and provides the required term to cancel Green-Schwarz contribution.

This completes the discussion of anomaly cancellation in the present setup. Note that

there may exist mixed anomalies with more gauge fields from the RR sector, obtained

from integration of higher-degree forms over submanifolds of the internal space.

4 Conclusions

We have discussed how field strength fluxes induce interesting topological effects on D-

branes. In particular they lead to an intricate pattern of anomaly cancellation in com-

pactifications leading to chiral spectra. We also expect and hope many more surprises to

show up in future research on these interesting vacua.



1368 Parallel Sessions

Acknowledgments

I thank the Organizers of SUSY 2002 for a very enjoyable meeting. I also thank my
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