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Abstract
This talk describes work in progress on the properties of massless propagators in

odd spacetime dimensions and their implications for Hawking radiation. Motivated
by the fact that in odd-dimensional Minkowski spacetime an accelerating detector
(Unruh-De Witt detector) coupled to bosons (fermions) register a Fermi-Dirac
(Bose-Einstein) thermal spectrum because of the breakdown of geometrical optics,
we describe an ongoing investigation into whether this apparent spin statistics flip
can be found in any form in the Hawking radiation from a black hole and discuss
the implications for searches for large extra dimensions at the LHC.

It is by now well understood that there are many reasons to study phenomena related to
the presence of extra spacetime dimensions. The extra dimensions paradigm (which can
be motivated within string theory) has inspired novel solutions/rephrasings of the hier-
archy problem using large [1] and/or warped [2] extra dimensions and a low fundamental
(higher-dimensional Planck) scale. These scenarios generically lead to distinctive collider
signatures [3]; one of the most striking signatures is that forthcoming colliders such as
the LHC can copiously produce black holes [4, 5], opening up the exciting possibility of
observing Hawking radiation [6] in the laboratory.

If spacetime is D-dimensional, an important goal is to measure the number of extra
dimensions. In this talk, we will focus on a possible probe of whether D is even or odd
related to the properties of massless propagators in even and odd spacetime dimensions
and their possible implications for the spectrum of Hawking radiation.

To begin, let us review the Green functions for massless scalar particles in D dimen-
sions (the extension to spinors is straightforward). The classical retarded propagator
GD

R(x, x′) satisfies the usual equation GD
R(x, x′) = δ(D)(x−x′), with the boundary condi-

tions GD
R(x, x′) = 0 for (x− x′)2 < 0, x0 −x′0 < 0.2 In terms of scalar field commutators

GD
R(x, x′) = i〈[ϕ(x), ϕ(x′)]〉θ(x0 − x′0). (1)

In the spectral representation

GD
R(x, x′) = −

∫ dk0

2π

dD−1k

2πD−1

ei(k
0y0−�k·�y)

(k0 − |�k| − iε)(k0 + |�k| − iε)
, (2)

in which y ≡ x− x′. When D is even, GD
R(x, x′) is given by

GD even
R (x, x′) = (−)

D−4
2 Ω′

D−2

D−4
2∑

p=0

bp∂
D−4−2p
y0 ∂2p

y IE (3)

1Work in collaboration with D.J.H. Chung.
2Throughout this paper, analogous expressions hold for the advanced propagator GD

A (x, x′), defined
by GD

A (x, x′) = δ(D)(x − x′), GD
A (x, x′) = 0 for (x − x′)2 < 0, x0 − x′0 > 0.
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)
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)
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(4)

IE =
π

(2π)D−1

δ(y0 − y)

y
. (5)

Note that this propagator (as expected) has support only on the lightcone. However,
this no longer holds if D is odd. More precisely,

GD odd
R (x, x′) = (−)

D−3
2 Ω′

D−2

D−3
2∑

p=0

cp∂
D−3−2p
y0 ∂2p

y IO, (6)

cp =
(−)p

(
D−3

2

)
!(

D−3
2

− p
)
!p!

(7)

IO =
π

(2π)D−1

θ((y0)2 − y2)√
(y0)2 − y2

. (8)

Clearly, GD odd
R (x, x′) has support inside the lightcone, even though the propagator de-

scribes massless particles. Signal propagation hence is not sharp; sources of finite du-
ration have an everlasting afterglow, indicating the well-known violation of Huygen’s
principle in odd spacetime dimensions. Compactification does not spoil this property;
i.e. the support structure inside the lightcone in compact space is qualitatively dif-
ferent in even- and odd-dimensional spacetimes (this difference is most extreme in the
decompactified limit).

Can lightcone support be used to detect the oddity of D? In particle physics, tree-
level scattering amplitudes are blind to this property (momentum space propagators
have qualitatively similar features). Certainly physics which depends crucially on con-
figuration space properties might probe this feature. One known example is the Unruh
effect: a uniformly accelerated detector (Unruh-De Witt detector) in Minkowski vacuum
perceives a thermal bath of particles [7]. In even spacetime dimensions, the accelerated
detector coupled to bosons (fermions) detects the usual Bose-Einstein (Fermi-Dirac)
thermal spectrum. However, it was discovered in the 1980’s that in odd spacetime di-
mensions there is a spin-statistics flip: the Unruh-De Witt detector coupled to bosons
(fermions) detects Fermi-Dirac (Bose-Einstein) statistics [8]! The statistics flip can be
traced back to the support structure of the classical propagators, which was outlined in
a beautiful paper by Ooguri [9].

To see this more clearly, consider an Unruh-De Witt monopole detector in D dimen-
sions with the uniformly accelerated trajectory (in Rindler coordinates with acceleration
α−1) xi . . . , xD−2 = 0,xD−1 =

√
t2 + α2,t = α sinh(τ/α), where τ is the proper time of

the detector. The quantity of interest for the particle detection transition rate is the
detector response function

F (ω) =
∫ ∞

−∞
d∆τe−iω∆τG+(x(τ), x(τ ′)), (9)
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where ∆τ = τ − τ ′. F (ω) is the Fourier transform of the Wightman function

G+(x(τ)x(τ ′)) = 〈0M |ϕ(x(τ))ϕ(x(τ ′))|0M〉. (10)

In D = 4,

G+(∆τ) = − 1

16π2α2

1

sinh2(∆τ
2α

− iε
α

)
= GR

+, (11)

and one can show by contour integration that F (ω) is proportional to the Planck spec-
trum, F (ω) ∝ 1/(e2παω − 1). However, for D = 5

G+(∆τ)
i

64π2α3

1

sinh3(∆τ
2α

− iε
α

)
= GR

+, (12)

and the analogous contour integration yields F (ω) ∝ 1/(e2παω + 1), i.e., Fermi-Dirac
statistics. (The crucial feature is the sinh3 rather than sinh2 dependence.) In general
dimension D = N , one finds F (ω) ∝ 1/(1 + (−)N−1e2παω) [8].

The statistics flip in odd D can be traced back to the lightcone support of GD
R(x, x′)

[9]. The argument is as follows. Consider the thermal Green functions

Gβ
+ =

1

Z
Tr

[
e−βHϕ(x)ϕ(x′)

]
(13)

Gβ
− =

1

Z
Tr

[
e−βHϕ(x′)ϕ(x)

]
(14)

Gβ
C =

1

Z
Tr

[
e−βH [ϕ(x), ϕ(x′)]

]
(15)

Gβ
AC =

1

Z
Tr

[
e−βH{ϕ(x), ϕ(x′)}

]
, (16)

in which Z ≡ Tre−βH , and define their Fourier transforms

F β
X(ω) =

∫ ∞

−∞
dte−iωtGβ

X(t). (17)

The KMS condition Gβ
∓(t + iβ; �x, x′) = Gβ

±(t, �x, x′) implies that

F β
+ =

−F β
C

eβω − 1
=

F β
AC

eβω + 1
. (18)

In addition, Sewell’s theorem dictates that GR
+ for the Rindler system (constantly ac-

celerating observer coordinatization of a patch of Minkowski space) coordinates behaves
like Gβ

+ with β ≡ 2πα, such that the detector response function F is given by

F (ω;α,D) =
−FR

C (ω;α,D)

eβω − 1
=

FR
AC(ω;α,D)

eβω + 1
. (19)

Finally, to obtain the ω dependence of F (ω;α,D), it is necessary to determine whether
or not FR

C,AC(ω;α,D) are finite or infinite polynomials in ω. There is a mathematical
theorem which states if a given function f(t) has support only at t = 0, it can be
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expressed as a finite sum of derivatives of δ-functions f(t) =
∑Nc<∞

n γnδ
(n)(t), and its

Fourier transform is
∫ ∞
−∞ dte−iωt =

∑Nc<∞
n ρnω

n. For even D, the previous discussion of
the classical propagators tells us that FR

C is a finite polynomial in ω, and F registers
Bose-Einstein statistics. However, this is not true for odd D, because the commutators
have support inside the lightcone. In this case it is actually the anticommutator which
has support only on the lightcone, such that FR

AC is the finite polynomial in ω and F
registers Fermi-Dirac statistics!

Unfortunately, the Unruh effect is not of practical applicability for the laboratory
setting. However, it is related in a nontrivial way to Hawking radiation. More precisely,
if a detector were to observe Hawking radiation at a constant radius outside a black
hole, the detector is undergoing uniform acceleration. In the rest frame of the detector,
for physical wavelengths λ arbitrarily small compared to the radius r of any sphere
enveloping the black hole, the physics should be identical to that of a Rindler system
and at least for those wavelengths, one expects to recover the statistics flip observed for
Unruh detectors in odd dimensions. Since the Unruh effect is only appreciable for λ less
than inverse acceleration 1/a, and since the acceleration of a constant radius detector
diverges near the black hole horizon, the full statistics flip should be recovered in the
limit that the detector is arbitrarily close to the black hole surface.

Hence, if black holes are detected at the LHC and if this statistics flip were to occur
for their Hawking radiation it would provide an experimental probe into the oddity of
the extra dimensions. However, it is necessary to mention at the outset that phenomeno-
logically the effect is likely to be too small to observe even if present because it would
be the bulk (graviton) states which would demonstrate this feature, while black holes
radiate mainly on the brane [10] (the phase space is also suppressed for higher spins).

The appearance of Hawking radiation is associated with the formation of a spacetime
horizon during the formation of the black hole. Hence, it is first necessary to identify the
definition of the vacuum states before and after the formation of the black hole. For the
spherically symmetric black hole the vacuum state before the black hole creation is the
Kruskal vacuum and the vacuum state after the black hole creation is the Schwarzschild
vacuum. To calculate the Hawking radiation, two complete bases of eigenmodes (for the
creation and annihilation operators) covering the same spacetime are then obtained by
solving the mode equation with each of the boundary conditions. The modes can then
be related using the Bogoliubov transformation method.

In practice, instead of dealing with a time dependent system of collapse, it is simpler
to replace the system with an eternal black hole and use the natural boundary condi-
tions afforded by the Cauchy surface in the future infinity I+ ∪ H+ (in Schwarzschild
coordinates) and the boundary condition on the past horizon H− (in Kruskal). Denoting
the modes with Schwarzschild (Kruskal) boundary conditions as ϕi

S (ϕj
K), where the su-

perscript denotes the mode quantum number, we then need to solve for the Bogoliubov
transformation coefficient βij. It is obtained using ϕi

S =
∑

j [α
ijϕj

K +βijϕ∗j
K ], which yields

the spectrum as ni =
∑

j |βij|2.
Consider the Kruskal coordinates in 5D, which are written as

ds2 = −(1 +
r

rH
)2e−2r/rHdūdv̄ + r2dΩ2, (20)
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with ū = −rHe
−u/rH , v̄ = rHe

v/rH , and where u and v are the usual tortoise light-
cone coordinates. Since the relationship between the Kruskal coordinates (ū, v̄) and the
Schwarzschild coordinates (u, v) does not depend on D, the same functional result for
the thermal spectrum is obtained in 5D as in 4D, indicating no apparent statistics flip.

However, the boundary condition on H− matching the real black hole collapse is
contingent upon the validity of the geometrical optics approximation, which breaks down
for odd D due to the violation of Huygen’s principle in odd spacetime dimensions. The
validity of this calculation is thus currently under investigation. Furthermore, if one
uses an Unruh detector far from the black hole and near the black hole, it should be
possible at least to interpolate smoothly between one spectrum statistics and the other.
Calculations along these lines are currently in progress.
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