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Abstract

In this talk we discus some properties of supersymmetric theories on orbifolds in five
dimensions. The structure of FI-tadpoles may lead to (strong) localization of charged bulk
scalars. Orbifold theories may suffer from various kinds of anomalies. The parity anomaly
may render the construction of the orbifold theory ill-defined. The gauge anomaly on the
orbifold are localized at the fixed points, which can sometimes be canceled by a Chern—
Simons term.

1 Introduction and summary

Recently there has been a large interest in field theories with extra dimensions. When
these extra dimensions have boundaries, one has to consider field theories with fields
living both in the bulk and on these boundaries. As those theories are presumably some
sort of low—energy description of string or M—theory, they often contain some remnant of
supersymmetry. At the same time one would hope that they allow for phenomenology
which resembles physics of the (supersymmetric) standard model.

A central question in the discussion of these field-theoretic orbifolds concerns the
stability with respect to ultraviolet effects as, for example, quadratic divergences of scalar
mass terms. One way to insure stability in this respect would be the consideration of
supersymmetry [1]. In the presence of U(1) gauge groups, however, supersymmtery is
not enough as there might appear quadratically divergent Fayet-Iliopoulos (FI) terms
even within the supersymmetric context. To obtain a stable theory such FI-terms have
to be cancelled by a specific choice of the U(1) charges of scalar fields. Higher order
corrections are absent due to a nonrenormalization theorem|[2]. The stability question of
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field theoretic orbifolds has been discussed extensively in the literature; see ref. [3] for a
review and references.

This discussion is quite relevant for phenomenological considerations as the standard
model contains the U(1) gauge group of hypercharge. Quadratically divergent FI-tadpoles
will appear if the sum of the hypercharges of the scalar fields does not vanish. A theory
with a single Higgs multiplet (as in the standard model) will thus generically suffer from
an ultraviolet instability. The simplest way to avoid this problem is the introduction of a
second Higgs multiplet with opposite hypercharge (as e.g. in the minimal supersymmetric
standard model).

In higher dimensional theories with bulk and brane fields the above discussion will
become even more complex as localized Fl-tadpoles (at some boundary or fixed point)
might appear. In the present talk we shall elaborate on these complications and discuss the
physical consequences of localized anomalies and FI-tadpoles. For simplicity we consider
supersymmetric gauge theory in five dimensions compactified on S*/Z,, coupled to hyper
multiplets in the bulk and chiral multiplets on the boundaries. Before discussing these
aspects in more detail, let us summarize the results that are reviewed in this talk:

The shape of the Fl-terms over the fifth dimension leads to intriguing physical ef-
fects: it can cause the localization of the zero modes of the bulk hyper multiplets to the
branes. Another important issue in field theory is the structure of anomalies. For orb-
ifolds the anomaly structure can be quite rich: the gauge anomalies tend to be localized
at the branes, and their cancellation may involve some contributions of a five dimensional
Chern—Simons term. Another type of anomaly, the so—called parity anomaly, may lead
to difficulties in defining the orbifold theory in the first place.

2 The setup of the 5D supersymmetric orbifold

We consider a five dimensional bulk on S'/Z, with one vector multiplet V' and a set
of hyper multiplets H = {H® b = 1,...,n}. The vector multiplet V = (AM,)\,CD,E)
contains a five dimensional vector field A,;, a Dirac gaugino A, a real scalar ®, and
a triplet of auxiliary fields D in the off-shell formulation. The hyper multiplets H =
(o, yr, Y, f+, f-) consist of two complex scalars ¢, ¢_, called the hyperons, two
sets of chiral spinors ¥, ,%_p, the so—called hyperinos, and complex auxiliary scalars
fi,f-. They are charged under the U(1) gauge field, with charge operator g. The
orbifolding leads to the following parity assignments

state | A, | As | @ | A\ir [ Air | D3| Dig | . state | ds | Yar | ar | fu ]
parity | + | — [—] £ [ £ |+ | — | Coparity | £ | £ | £ | £ |

From the five dimensional supersymmetry transformations, one can obtain the un-
broken four dimensional supersymmetry transformation with Majorana parameter 7.,
which exists at the orbifold fixed points. This implies [4] that the four dimensional vec-
tor multiplet on the branes is given by V| = (Au,)ur,[)g) with “modified” auxiliary
field D3 = D5 — 0,®. In addition we allow for an arbitrary number of chiral multiplets
Co = (¢, Yor, fo) and Cr = (¢r, Urr, f,r) on the branes y = 0 and y = 7R.
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3 Fayet—Iliopoulos tadpoles and localization of bulk
fields

Now we turn to the first central topic of this talk: the structure of the one loop induced
Fl-tadpoles. As D3 not Dj is the relevant auxiliary field for the vector multiplet at the
branes, the one-loop FI-terms due to brane chiral multiplets, Cq or C, are proportional
to D3

¢0 ¢ﬂ'
A2
£b7‘anes(y) = 95@ Z 5(y - IR)U(CJI) (1)
—D5 + qu) I=0,m

The situation for tadpoles due to the bulk fields is more subtle. In ref. [5] it was shown
that hyper multiplets may lead to a quadratically divergent zero mode FI-term, and in ref.
6] it was argued that the counter term for Dj is located at the branes. This localization
on the branes implies that there exists tadpole for the 0,® as well. In ref. [7, 8] it was
shown that the bulk hyperinos 1) give rise to a tadpole for this operator. The bulk induced
tadpoles involve a double derivative acting on the brane delta functions:

by, 0 W

A2 InA2O
QQ Eoutr(Y) = 95 tréq) (167?2 + 1I167r2 Zy) [5(9) + 0y —7R)|. (2)
Dy o

The derivative 0, arises because of the Kaluza—Klein mass coupling of the hyperinos to
®, which is dictated by five dimensional supersymmetry. Combining both the brane and
bulk contributions to the FI-terms gives

Ey) =) (& + &0y —IR), (3)
I1=0,7
A2 /1 1 InA?1
&1 = 9576 <§t1"(61) + tr(qf))> & = 195 1I167T2 Str(a). (4)

The second main issue of this talk is the question how these FI-terms can cause an
instability that finally leads to localization of bulk hyper multiplet fields. For this we
first investigate the background for ® in the presence of the Fl-tadpoles. Its (BPS) field
equation, that respects four dimensional supersymmetry, is given by

Dy =0,® = g5(¢Lqpy — dLqd ) + Y 6(y — wR)gsd}ardr +£(y). (5)

I=0,7

There are supersymmetric vacua which do not spontaneously break the gauge symmetry
(all charged scalars vanish in the vacuum) if the following integrability condition is satisfied

TR
0= [[dya,(#) = j6a+ 56 = tala) + tx(a) + tla) 0. (6)
0
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Note that this condition is identical to the requirement that the mixed U(1) gauge grav-
itational anomaly is absent in the effective four dimensional theory. Therefore, from now
we always assume that &, = —&;. Even with this requirement fulfilled, the shape of the
background expectation value of (®) is non—trivial. Its integral, for example, takes the
form ) .

| v @) ) = 560k~ 1y~ RI) + €5 (500) + by - 7)) 7)

0

This affects the shape of the zero mode in a dramatic way. The shape of the zero mode
0% , of an even bulk field with charge g is given by

06, — gss (B) b, =0 = ¢8+<y>=exp{g5qb / dy<¢>>}¢8+, ®)

where the integral has been evaluated in (7). The remaining N = 1 four dimensional su-
persymmetry implies that the zero mode wave functions of the even bulk scalar ¢f, and
the chiral fermion ¢} 1, With charges g, are identical. The delta functions in that expres-
sion requires some form of regularization that takes the normalization foﬂR dy |gor(y)> =1
into account. Skipping the computational details (which can be found in ref.[8]) we find
that the shape of the zero mode crucially depends on the sign of the product of (g, (the
special case £ = 0 has be studied in refs.[9, 10]):

- B 2095980 Y 5 S 7R . N 0
(G ) = e W) + 6= 7R, > 0 (9)
1 0<y<7mR
b 9 95qb£0 69561b50 ) 9 /)
= < 0. 10
0 = Tt =T o ) —oen & (10)

Hence, for (g, > 0 the zero mode has the delta function support on the two fixed points,
but the height at these two fixed points is not the same: while, for /g, < 0 the zero mode
vanishes at both branes identically, but has an exponential behavior on the open interval
10, 7R[. In both cases, displayed in figures 1, the value of |£[/| does not appear anymore;
it has been absorbed in the regularization of the delta functions when implementing the
normalization of the modes. The shapes of the zero modes in the limit of the cut—off
A — oo are depicted in figure 2. When a zero mode becomes localized, it is natural to
ask what happens to the other (massive) states in the KK-towers. Taking into account
the non-trivial background for (®) induced by the FI-terms, the KK-mass spectrum is

given by
2

1 n
(m},)? = 1(95%50)2 + iz n € N. (11)

Clearly, in the limit of large cut-off A all non-zero mode states become extremely heavy,
and should decouple from the theory.

4 Orbifold anomalies

The remainder of this talk is devoted to the subject of anomalies that can be associated to
orbifold models. First we briefly mention the parity anomaly on the circle and then turn
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Figure 1: The two basic shapes (egs. (9) and (10)) of the zero mode with charge ¢, are
displayed for a finite value of the cut-off A. Delta function localizations, denoted by the

arrows.
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Figure 2: This table schematically displays the different shapes of a (bulk) zero mode
with charge ¢, # 0 when the cut—off A is taken to be very large.

our attention to the gauge anomalies on the orbifold. The construction of the orbifold
field theory relies on the fact that

O(—y) =i P(y), Au(—y) = Auly), As(—y) = —As(y), (12)
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is a symmetry of the theory on the circle which can be moded out, so as to obtain the
orbifold theory. However, one has to be careful since this symmetry can be anomalous as
was observed in ref. [11]. This anomaly can be canceled by adding the parity anomaly
counter term I'pac(A) = —mi fS4><Sl Q5(A), with Q5(A) the Chern-Simons 5-form. (See for
example ref.[12] for the definitions of forms s, 2,1 and Q3 .) But then invariance
under non—contractible gauge transformations may be lost. If this happens, it may not
be possible to define a consistent quantum field theory on this orbifold. Here we do not
go into detail but just state a rule of thumb: if the number of bulk fermions and the sum
of their charges is even, no parity anomaly arises [8].

Next, we consider gauge anomalies on the orbifold S'/Z,. Using a variant of the
argumentation of Horava and Witten [13], we infer that the gauge anomaly of this five
dimensional theory is localized at the fixed points

WT(A) = Nori [ (3(0) + 8y = <) Q45 ), (13)
5

where I'(A) denotes the effective action with the fermions integrated out. Here the
anomaly is normalized to the fundamental representation F' to fix the normalization N
of the anomaly uniquely. (Using a perturbative calculation a similar result was obtained
in ref.[10]. See also refs.[14, 15] for a discussion on the orbifold S'/Zy x Z,.) When there
are chiral fermions on the boundaries we may obtain additional anomaly contributions:
the variation of their effective action I';(A) reads

5AF[(A) = N[ 2 /

Qzqu(A; A)
S4

(14)

IR

In addition we can allow for a five dimensional Chern-Simons action I'cg(A):

5AP05(A) = NCS (5A7Ti/ Q5‘F(A)
Ms

—Neswi | (=6y)+ 6y 7R) e )y, (15)
Ms
To have a theory which does not have any anomaly we find the requirements
Nes = Nog — Ny, N+ Ny + N, =0. (16)

Notice that the consistency requirement takes the form of a sum rule, and is determined
by the fermionic zero mode spectrum of the bulk and branes only. Furthermore, a Chern-
Simons term is required only if the anomalies at both branes are not equal to each other.

In the final part of this talk we combine the localization effects and the discussion on
the gauge anomalies. One may define a “massive” anomaly as the anomaly of the bulk
fields minus the bulk zero mode. Now if due to FI-terms the zero mode gets localized at
a brane, the massive anomaly equals the variation of the Chern—Simons term. Pictorially
this may be represented as

Chern-Simons bulk localized zero
“anomaly” anomaly mode anomaly

0 TR 0 TR

(17)
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This shows that the localized bulk zero mode cancels the anomaly of the brane chiral
fermions; while the heavy stuff from the four dimensional effective field theory point of
view (the anomaly due to the massive KK-states and the Chern—Simons variation) cancel
among themselves, leaving no trace in the zero mode four dimensional theory.

Acknowledgments

Work supported in part by the European Community’s Human Potential Programme
under contracts HPRN-CT-2000-00131 Quantum Spacetime, HPRN-CT-2000-00148
Physics Across the Present Energy Frontier and HPRN-CT-2000-00152 Supersymme-
try and the Early Universe. SGN was partially supported by CITA and NSERC.

References

[1] E. Witten, Nucl. Phys. B 188 (1981) 513.

[2] W. Fischler, H. P. Nilles, J. Polchinski, S. Raby, and L. Susskind, Phys. Rev. Lett.
47 (1981) 757.

[3] D. M. Ghilencea and H. P. Nilles, J. Phys. G 28 (2002) 2475 [hep-ph/0204261].
[4] E. A. Mirabelli and M. E. Peskin, Phys. Rev. D 58 (1998) 065002 [hep-th/9712214].

[5] D. M. Ghilencea, S. Groot Nibbelink, and H. P. Nilles, Nucl. Phys. B 619 (2001) 385
[hep-th/0108184].

[6] C. A. Scrucca, M. Serone, L. Silvestrini, and F. Zwirner, Phys. Lett. B 525 (2002)
169 [hep-th/0110073].

[7] S. Groot Nibbelink, H. P. Nilles, and M. Olechowski, Phys. Lett. B 536 (2002) 270
[hep-th /0203055].

[8] S. Groot Nibbelink, H. P. Nilles, and M. Olechowski, Nucl. Phys. B 640 (2002) 171
[hep-th/0205012].

9] D. E. Kaplan and T. M. Tait, JHEP 0111 (2001) 051 [hep-ph/0110126].

[10] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Lett. B 516 (2001) 395
[arXiv:hep-th/0103135].

[11] L. Alvarez-Gaume, S. Della Pietra, and G. W. Moore, Annals Phys. 163 (1985) 288.
[12] M. Nakahara, Bristol, UK: Hilger (1990) 505 p. (Graduate student series in physics).
[13] P. Horava and E. Witten, Nucl. Phys. B 460 (1996) 506 [arXiv:hep-th/9510209].
[14] L. Pilo and A. Riotto, hep-th/0202144.

[15]

15] R. Barbieri, R. Contino, P. Creminelli, R. Rattazzi, and C. A. Scrucca, Phys. Rev.
D 66 (2002) 024025 [hep-th/0203039].



