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Presuming the new physics scale to be close to the TeV scale, there can be
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Some possibly very dramatic changes in phenomenology.

e We consider the usual two-brane (one visible, one hidden) RS 5D warped
space scenario.

e The model is defined by the 5D action:
4 — /' R
S = — [dxdyy/—g|—+A
2K 2
+ / d*x \/—gnia(Lnia — Vhia) + / d*x \/—Gvis(Lvis — Vuis)ol)
where g*¥ (i, v = 0,1, 2, 3, y) is the bulk metric and g}, (z) = gh¥(x,y =

0) and ¢!7 () = g"(z,y = 1/2) (p,v = 0,1,2,3) are the induced
metrics on the branes.

o If A/my = —Vp;qa = Viis = —6my/i? and if periodic boundary conditions
identifying (x,y) with (x, —y) are imposed, then the 5D Einstein equations
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=
ds? = e‘za(y)nuuda}“dm” — bgdyz,
where o(y) ~ mobg|y]|.

® Fluctations of g, relative to 7, are the KK excitations h7, .

e Fluctations of b(x) relative to by define the radion field.

e In addition, we place a Higgs doublet H on the visible brane.
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e We begin with
S§ — €/d4£13‘v gvisR(gvis)ﬁTﬁa (3)

where R(g.is) is the Ricci scalar for the metric induced on the visible brane.
e A crucial parameter is the ratio
v =vo/Agp . (4)
where A, is vacuum expectation value of the radion field.

e After writing out the full quadratic structure of the Lagrangian, including
& # 0 mixing, we obtain a form in which the hy and ¢, fields for £ = 0 are
mixed and have complicated kinetic energy normalization.

We must diagonalize the kinetic energy and rescale to get canonical
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normalization.

ho = (cos@—Gg—’YsirnS?)h—l—(sin9+fi£—7cosl9)qb
Z Z
= dh + co (5)
¢pop = — cos 49é + sin HE = a¢p + bh. (6)
VA VA

e The mixing angle 0 is given by
'm,zlo

mio — rn,io(Z2 — 36£2~2)

tan 20 = 12~&Z72

e In the above equations
Z* =14 6£v°(1 — 6¢) . (8)

Z? > 0 is required to avoid tachyonic situation.
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This can be reexpressed as the requirement:

11 14<<11 14 9
Tl G P R AR BT Gl et (9)

e The corresponding mass-squared eigenvalues are

1 1/2
mi = 272 (mio + Bmio + {[mfbo -+ Bmio]2 _ 4Z2mfbomiﬂ} ) ,

(10)
with 3 = 1 + 6£+? and Max[mp, my] = m..

e The process of inversion is very critical to the phenomenology and somewhat
delicate.

e One finds:

4,8mim2_ e
72

2

Z
[Brmys mg,] = —- |mi +mZ £ {(mi +m?)? —

(11)
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e For the quantity inside the square root appearing in Eq. (11) to be positive,
we require that:

2 Z2 Z2 1/2
i ()t m G (12

where 1 — Z?/3 = 36£2~4%/3 > 0.

l.e. since we will identify m_ with either m; or my, the physical states h
and ¢ cannot be too close to being degenerate in mass, depending on the
precise values of £ and ~; extreme degeneracy is allowed only for small &
and/or ~.

e A two-fold ambiguity remains in solving for ,Bmio and miﬂ, corresponding
to which we take to be the larger.

We resolve this ambiguity by requiring that mj — mj in the £ — 0
limit. This means that for Bmio we take the 4+ (—) sign in Eq. (11) for
mp > My (Mmp < my), i.e. for my, = my (my = m_), respectively.

e Given this choice, we complete the inversion by writing out the kinetic
energy of Eq. (?7?) using the substitutions of Egs. (5) and (6) and demanding

J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 8



that the coefficients of —2h? and —;¢? agree with the given input values
for m}, and m?.

It is easy to show that these requirements are equivalent and imply

12v€m?
sin20 = AL (13)

VA (Tn,z5 — mi)

Note that the sign of sin26 depends upon whether m; > mgb

versa. It is convenient to rewrite the result for tan 20 of Eq. (7)

or vice

12vémj

tan 20 = .
Z (mé + m3i — Zmio)

(14)

In combination, Eqgs. (13) and (14) are used to determine cos 26. Together,
sin 20 and cos 260 give a unique solution for 6.

Using this inversion, for given &, v, m; and my we compute

e Z2 from Eq. (8),
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m;, and mZ from Eq. (11),

and then 6 from Eq. (7).

With this input, we can then obtain a, b, ¢, d as defined in Egs. (5) and (6).

Net result

4 independent parameters to completely fix the mass diagonalization of the
scalar sector when £ # 0. These are:

£, Aqb s Mp, Mg, (15)

where we recall that v = vo/A, with v9 = 246 GeV.

Two additional parameters will be required to completely fix the phenomenology
of the scalar sector, including all possible decays. These are

AN

AW ’ mj , (16)

where ./A\W will determine KK-graviton couplings to the h and ¢ and m, is
the mass of the first KK graviton excitation.
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We recall the earlier formulae:

Aw = ~ v/2Mp;Q
\%%4 exn(l/z) PlR &0
M, = MLy,
Ay = V6MpQy=V3Aw, (17)
where QoMp; = e ™0%0/2Nf5, should be of order a TeV to solve the

hierarchy problem. In Eq. (17), the x,, are the zeroes of the Bessel function
Ji (1 ~ 3.8, 2 ~ 7.0). A useful relation following from the above
equations is:

my A¢

1 .
Mpi/6

mgo/Mp; is related to the curvature of the brane and should be a relatively
small number for consistency of the RS scenario.

(18)

my =

e Sample parameters that are safe from precision EW data and Runl Tevatron
constraints are Ay, = 5 TeV (= Aw ~ 3 TeV) and my/Mp; = 0.1.

We will also consider a marginal scenario with A, = 1 TeV.

J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 11



e For m; and my we will consider a range of possibilities, but with some
prejudice towards my < my. There are theoretical arguments in favor of

this.

A light radion ¢ eigenstate presents a particularly rich phenomenology.
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The Couplings

The ff and V'V couplings
The V'V couplings

e The hy has standard ZZ coupling while the ¢y has ZZ coupling deriving
from the interaction _%Tﬁ using the covariant derivative portions of

T*(ho). The result for the 7, portion of the ZZ couplings is:

gmz gmz

(d+~b) , gzze =
Cw Cw

(c+~a) . (19)

gzzh —

g and cy denote the SU (2) gauge coupling and cos Oy, respectively. The
W W couplings are obtained by replacing gmz/cw by gmwy .

e Additional contributions to the ZZh and Z Z ¢ couplings come from —%’)Tl‘f

for the gauge fixing portions of 7},,,. These terms vanish when contracted
with on-shell W or Z polarizations, which is the physical situation we are
interested in. In addition, these extra couplings vanish in the unitary gauge.
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e The ff couplings
— The hg has standard fermionic couplings.

— The fermionic couplings of the ¢, derive from _%Tﬁ using the Yukawa

interaction contributions to T,T'
— One obtains results in close analogy to the V'V couplings just considered:

gm gm
f(d-|-’7b)a 9rfp = —

! (c + ~va). (20)

gdffn = — -

me

e Note same factors for WW and ff couplings.
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f

h ) DU, 124 h 74 0f

- o (d+b)n —i§ o (d + )
f

h .

ﬁ igmw (d + vb)n*”

Z, /

qbi $9M2 (¢ 4 ya)nH ¢< —i§ L (c+ va)

Z, v f

qbﬁ igmw (¢ + ya)n*”
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The gg and ~~ couplings

e There are the standard loop contributions, except rescaled by ff/VV
strength factor.

Fon; c~, the ) . comprises all charged fermions (including quarks, with
N! =3 and e; = 2/3 or —1/3, and leptons, with e; = —1 and N' = 1)
and the W boson (with e; = 1 and N* = 1).

For c,4, the >, is over all colored fermions (assumed to have N* = 3).

The auxiliary functions are:

Fl/z(T)
Fl('T)

—27[14+ (1 = 7)f(7)], (21)
24+31r+37(2—1)f(7), (22)

for spin-1/2 and spin-1 loop particles, respectively, with

1+ \/ﬁ] : o)

10 = =i |
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T = 4m?/M?, where m is the mass of the internal loop particle and M is
the mass of the scalar state, h or ¢.

e Must include the anomalous contributions, which are expressed in terms of
the SU(3)xSU(2)xU(1) B function coefficients b3 = 7, b, = 19/6 and
by = —41/6.

e For the h, gs/v = d + +vb and g, = ~+b. For the ¢, gyv = c + ~va and
gr = 7Ya.
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¢, h .
- k'Q ZCgéab[kl . kQT’I’“/ _ k;k'g] . Cg — _4?;1_31) [ng ZZ Fl/Q(Ti) . 2b3gT]
g, v, b
Y, W
¢7h kl . U - o 5 ‘
ko iCy Ky - ko — kiky| 2 ey = =519y 25 € N Fi(7i) — (b2 + by) gy ]
Y, V
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Zhao tree level couplings are absent.

The cubic interactions

1. First, we have

1 1
L3> —V(Hy) = —X(H{Hy — 51}3)2 = —A(vih] + voh) + Zhg) , (24)

after substituting Hy = %(fuo + hy). Expressing A in terms of my, as in

Eq. (?7), the h]} term of Eq. (24) becomes

2
mho

L3> ——2h;.

2’00

2. The interaction of ¢o with T* (ho):

®o ®Po

i ﬁ(ho) = —A— (—aphoapho —I— 4)\U§h(2)) .

Ay ¢

(25)

(26)
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3. The interaction of the KK-gravitons with T#"(hy):

B ghuu(fﬁa Yy = 1/2)TNV A Z hn 8“hfoauhO ’ (27)

where we keep only the derivative contributions and we have dropped (using
the gauge hf|™ = 0) the n*" parts of TH".

4. The &-dependent tri-linear components of Eq. (?77):

6£Q(x) (—OQ(z) + ehpy(x,y = 1/2)048¥Q(x)) H H,

> {—3ih25¢0 — Bﬁﬂhoﬁbomﬁbo
Ag ° A2
2
—12&— hn O py0"hy — 6E— h™ 0F¢e0” 28
EAWA¢n $00” hy §WAZ,W $00” o | (28)

where we have employed the expansion of h,,(z,y = 1/2) in terms of the

hZ’V, used the gauge conditions B“hZV = 0 and hﬁ" — 0, and also used

the symmetry of h,,, .
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. > {\ , ’&gj{% = A’—¢ bd{[l?lwf +d(6 + 1)) (k3 + k3 + k3) — 12dm,210} — 37_1d3m,210]
3 .
k2
¢
¢ /751 : .
k_3_< % ) zgj;% :AL¢ ac{[l?cwf +c(66 +1)] (k3 + k5 + k3) — 120777%0} - 37_103777,%0]
k2
¢
h o ok
ST qbl ’&% =1, {6&5(7(ad—|—bc)—|—cd)—|—b02}(k:%—|—k§)
3 .
1;2 + c{lQabvf + 2ad + be(6€ — 1)}/-6?2, — 4c(2ad + be)mi_ — 3y~ CQdmhol
vk
lf <, hl i = L {6b¢(v(ad + be) + cd) + ad? } (k2 + k3)
3 N
];2 + d{lZab*yf + 2bc + ad(6& — 1)}k§ — 4d(ad + 2bc)mj, — 3710d2m%0]
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e Choose Ay, = 5 TeV. The Z? > 0 gives £ constraint.

e LEP/LEP2 provides an upper limit on ZZs (s = h or ¢) from which we
can exclude regions in the (my, m,) plane for a given choice of R?.

Use upper limits on the ZZs coupling in both with and without b tagging,
with computed branching ratios into b and non-b final states.

e Conclusion:

Small m, relative to my, is entirely possible given current data so long as
mp 2 115 GeV. (The ZZ ¢ coupling does not blow up.)
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Allowed Regions and LEP /LEP2 Constraints
~ 300 -

250

m, (GeV

200 allowed

excluded by LEP/LEP2 data

i
ll

-3 -2 -1 0 1 2 3

J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 23



e First, consider the ff/VV couplings of h and ¢ relative to SM, taking
myp — 120 GeV and A¢ = 5 TeV.

e Next, the h® and ¢ couplings relative to hZ,, taking my,,, = my or my,
respectively.

Deviations shown should be readily explorable at an LC for the h® coupling,
but the ¢® coupling may be difficult to probe except where it gets near 1
(relative to SM comparison).
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Contours of g%, = (d + vb)?
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Contours of g7 ,4 = (¢ + va)?

300 1 I I
250 | N
s (CeV) 200 _ " 0.001 -
0 mp =120 GeV % 005 ——
100 |- . 2 _ ¥ N )
50 [ = N

J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 27



1.000

- I I I I | I\ I I I | I I I I | I I I I 3

- \ / i,

0.500 — \\ m4=20 G/e’V —

- m,=120 GeV \ my=55 GeV ~ --------- -

- \\\ m¢=290 GeV —(———— ]

0.100 v \\ / y —

_ \ / )/ -

- \ \ / —_

s 0.050 | \ | // y _

NN - \ \ / /! =

e])) i \\ \ [ /,’ |

0.010 —

0.005 [~ —
0'001 1 1 1 1 1 1

—4 4

J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 28



Contours of gppy

300
200 -
200 -
m¢ (GGV)
150 -
100 -

o0

J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 29



I I I I | I I I I | I I I I I I I I
OO = m,=20 GeV =
- m;=955 GeV ----------- .
5.00 — ¢ —
- my=200 GeV ~ —————— .
1.00 C - \\ —
g N s ~Q .
= - / ]
Q0 0.50 — / \ —
B / \\ .
I / i
0.10 |
£ m; =120 GeV 3
0.05 — —

1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
—4 =2 0 2 4

3

J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 30



Contou
T

300
200
200 -
m¢ (GeV)
150

100 [~

I‘SOfg¢¢¢
I

J. Gunion

Planck02 — May 24 and SUSY02 - June 27, 2002

31



1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
100 = . my=20 GeV 3
E kN my=55 Gey ~ --------- -
i \\ m4=200 /GeV —————— i
101 _
- [ ]
by
o) 107° —
1079 & 3
10~4 L

I
N
N

J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 32



J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 33



h Branching Ratio

10~ 1

10~ <R

103

10~ 4

—————
-—-o
-~a
-~
~~o
-~
~
-
-
-~

memememememe———-

m; =120 GeV
my=20 GeV

- -
~
Tl 88 i
~
\\
=2 -
\\
~
1 1 1 1 1 1

J. Gunion

Planck02 — May 24 and SUSY02 — June 27, 2002 34



.
/

10~1 U
4 =<

) IIIIIII
!
1 IIIIII|

)

I
-

]

10~ <R

______________________________
- ~

h Branching Ratio

103
m; =120 GeV

m¢=55 GeV

10_4 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 1 1

J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 35



) rrren
o
op

1 L1 11111

-
-
-
m——
-

10~ <R

cmemcmcmem

h Branching Ratio

10~3
m;=120 GeV
m¢=200 GeV

10_4 [l [l [l [l | [l [l [l [l | [l [l [l [l | [l [l [l [l

A
2
o
[AV]
N

J. Gunion Planck02 — May 24 and SUSY02 — June 27, 2002 36



¢ Branching Ratio
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Rate ratio: gg—>h—>77/gg—>hSM—>77
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Rate ratio: gg->¢->vy/gg-hgy=>7y
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Rate ratio: yy~h-bb /yy->hg~>bb
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More marginal case: Ay, =1 TeV
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e The Higgs-radion sector will certainly be very revealing, and for some
parameter choices may prove quite challenging to fully explore.

O @ h
mg = 200 GeV £

e — keep improving and working on every possible signature.

e The large deviations of h properties with respect to hg); properties is not
really surprising given the nearness of the Ay, = 1 TeV scale to the Higgs
mass scales being considered.

e It would be nice to rule out the very light ¢ possibility.

e The decays (such as h — ¢¢ and h — h™¢) which are only present if

& # 0 can have large branching ratios and would provide an incontrovertible
signature for mixing.
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