The Scalar Sector of the Randall-Sundrum Model

Jack Gunion
Davis Institute for High Energy Physics, U.C. Davis
Planck 2002, Kazimierz, Poland, May 24, 2002 and SUSY 02, DESY, June 17, 2002

Collaborators: D. Dominici, B. Grzadkowski, M. Toharia

Outline

- Is the vacuum unique?
- Understanding the parameter space
- Basics of the couplings
- Phenomenology
- Conclusions

Presuming the new physics scale to be close to the TeV scale, there can be a rich new phenomenology in which Higgs and radion physics intermingle, especially if the $\boldsymbol{\xi} \boldsymbol{R} \widehat{\boldsymbol{H}}^{\dagger} \widehat{\boldsymbol{H}}$ mixing term is present in \mathcal{L}. Previous work:

- $\xi=0$:

1. Bae:2000pk S. B. Bae, P. Ko, H. S. Lee and J. Lee, Phys. Lett. B 487, 299 (2000) [arXiv:hep-ph/0002224].
2. Davoudiasl:1999jd H. Davoudiasl, J. L. Hewett and T. G. Rizzo, Phys. Rev. Lett. 84, 2080 (2000) [arXiv:hep-ph/9909255].
3. Cheung:2000rw K. Cheung, Phys. Rev. D 63, 056007 (2001) [arXiv:hepph/0009232].
4. Davoudiasl:2000wi H. Davoudiasl, J. L. Hewett and T. G. Rizzo, Phys. Rev. D 63, 075004 (2001) [arXiv:hep-ph/0006041].
5. Park:2000xp S. C. Park, H. S. Song and J. Song, Phys. Rev. D 63, 077701 (2001) [arXiv:hep-ph/0009245].

- $\xi \neq 0$:

1. wellsmix G. Giudice, R. Rattazzi, J. Wells, Nucl. Phys. B595 (2001), 250, hep-ph/0002178.
2. csakimix C. Csaki, M.L. Graesser, G.D. Kribs, Phys. Rev. D63 (2001), 065002-1, hep-th/0008151.
3. Han:2001xs T. Han, G. D. Kribs and B. McElrath, Phys. Rev. D 64, 076003 (2001) [arXiv:hep-ph/0104074].
4. Chaichian:2001rq M. Chaichian, A. Datta, K. Huitu and Z. h. Yu, Phys. Lett. B 524, 161 (2002) [arXiv:hep-ph/0110035].
5. Hewett:2002nk J. L. Hewett and T. G. Rizzo, hep-ph/0202155.
6. Csaki:1999mp C. Csaki, M. Graesser, L. Randall and J. Terning, Phys. Rev. D 62, 045015 (2000) [arXiv:hep-ph/9911406].

Randal-Sundrum Review

Some possibly very dramatic changes in phenomenology.

- We consider the usual two-brane (one visible, one hidden) RS 5D warped space scenario.
- The model is defined by the 5D action:

$$
\begin{aligned}
S= & -\int d^{4} x d y \sqrt{-\widehat{g}}\left(\frac{R}{2 \widehat{\kappa}^{2}}+\Lambda\right) \\
& +\int d^{4} x \sqrt{-g_{h i d}}\left(\mathcal{L}_{h i d}-V_{h i d}\right)+\int d^{4} x \sqrt{-g_{v i s}}\left(\mathcal{L}_{v i s}-V_{v i s}\right)(, 1)
\end{aligned}
$$

where $\widehat{g}^{\widehat{\mu} \hat{\nu}}(\widehat{\mu}, \widehat{\nu}=0,1,2,3, y)$ is the bulk metric and $g_{h i d}^{\mu \nu}(x) \equiv \widehat{g}^{\mu \nu}(x, y=$ $0)$ and $g_{v i s}^{\mu \nu}(x) \equiv \widehat{g}^{\mu \nu}(x, y=1 / 2)(\mu, \nu=0,1,2,3)$ are the induced metrics on the branes.

- If $\Lambda / m_{0}=-V_{h i d}=V_{v i s}=-6 m_{0} / \hat{\kappa}^{2}$ and if periodic boundary conditions identifying (x, y) with $(x,-y)$ are imposed, then the 5D Einstein equations
\Rightarrow

$$
\begin{equation*}
d s^{2}=e^{-2 \sigma(y)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}-b_{0}^{2} d y^{2} \tag{2}
\end{equation*}
$$

where $\sigma(y) \sim m_{0} b_{0}|y|$.

- Fluctations of $g_{\mu \nu}$ relative to $\eta_{\mu \nu}$ are the KK excitations $h_{\mu \nu}^{n}$.
- Fluctations of $b(x)$ relative to b_{0} define the radion field.
- In addition, we place a Higgs doublet \widehat{H} on the visible brane.

Including the $\boldsymbol{\xi}$ mixing term

- We begin with

$$
\begin{equation*}
S_{\xi}=\xi \int d^{4} x \sqrt{g_{\mathrm{vis}}} \boldsymbol{R}\left(\boldsymbol{g}_{\mathrm{vis}}\right) \widehat{\boldsymbol{H}}^{\dagger} \widehat{\boldsymbol{H}} \tag{3}
\end{equation*}
$$

where $R\left(g_{\text {vis }}\right)$ is the Ricci scalar for the metric induced on the visible brane.

- A crucial parameter is the ratio

$$
\begin{equation*}
\gamma \equiv v_{0} / \Lambda_{\phi} \tag{4}
\end{equation*}
$$

where Λ_{ϕ} is vacuum expectation value of the radion field.

- After writing out the full quadratic structure of the Lagrangian, including $\xi \neq 0$ mixing, we obtain a form in which the h_{0} and ϕ_{0} fields for $\xi=0$ are mixed and have complicated kinetic energy normalization.

We must diagonalize the kinetic energy and rescale to get canonical
normalization.

$$
\begin{align*}
h_{0} & =\left(\cos \theta-\frac{6 \xi \gamma}{Z} \sin \theta\right) h+\left(\sin \theta+\frac{6 \xi \gamma}{Z} \cos \theta\right) \phi \\
& \equiv d h+c \phi \tag{5}\\
\phi_{0} & =-\cos \theta \frac{\phi}{Z}+\sin \theta \frac{h}{Z} \equiv a \phi+b h . \tag{6}
\end{align*}
$$

- The mixing angle θ is given by

$$
\begin{equation*}
\tan 2 \theta \equiv 12 \gamma \xi Z \frac{m_{h_{0}}^{2}}{m_{\phi_{0}}^{2}-m_{h_{0}}^{2}\left(Z^{2}-36 \xi^{2} \gamma^{2}\right)} \tag{7}
\end{equation*}
$$

- In the above equations

$$
\begin{equation*}
Z^{2} \equiv 1+6 \xi \gamma^{2}(1-6 \xi) \tag{8}
\end{equation*}
$$

$Z^{2}>0$ is required to avoid tachyonic situation.

This can be reexpressed as the requirement:

$$
\begin{equation*}
\frac{1}{12}\left(1-\sqrt{1+\frac{4}{\gamma^{2}}}\right) \leq \xi \leq \frac{1}{12}\left(1+\sqrt{1+\frac{4}{\gamma^{2}}}\right) \tag{9}
\end{equation*}
$$

- The corresponding mass-squared eigenvalues are

$$
\begin{equation*}
m_{ \pm}^{2}=\frac{1}{2 Z^{2}}\left(m_{\phi_{0}}^{2}+\beta m_{h_{0}}^{2} \pm\left\{\left[m_{\phi_{0}}^{2}+\beta m_{h_{0}}^{2}\right]^{2}-4 Z^{2} m_{\phi_{0}}^{2} m_{h_{0}}^{2}\right\}^{1 / 2}\right) \tag{10}
\end{equation*}
$$

with $\beta \equiv 1+6 \xi \gamma^{2}$ and $\operatorname{Max}\left[m_{h}, m_{\phi}\right]=m_{+}$.

- The process of inversion is very critical to the phenomenology and somewhat delicate.
- One finds:

$$
\begin{equation*}
\left[\beta m_{h_{0}}^{2}, m_{\phi_{0}}^{2}\right]=\frac{Z^{2}}{2}\left[m_{+}^{2}+m_{-}^{2} \pm\left\{\left(m_{+}^{2}+m_{-}^{2}\right)^{2}-\frac{4 \beta m_{+}^{2} m_{-}^{2}}{Z^{2}}\right\}^{1 / 2}\right] \tag{11}
\end{equation*}
$$

- For the quantity inside the square root appearing in Eq. (11) to be positive, we require that:

$$
\begin{equation*}
\frac{m_{+}^{2}}{m_{-}^{2}}>1+\frac{2 \beta}{Z^{2}}\left(1-\frac{Z^{2}}{\beta}\right)+\frac{2 \beta}{Z^{2}}\left[1-\frac{Z^{2}}{\beta}\right]^{1 / 2} \tag{12}
\end{equation*}
$$

where $1-Z^{2} / \beta=36 \xi^{2} \gamma^{2} / \beta>0$.
I.e. since we will identify m_{+}with either m_{h} or m_{ϕ}, the physical states h and ϕ cannot be too close to being degenerate in mass, depending on the precise values of ξ and γ; extreme degeneracy is allowed only for small $\boldsymbol{\xi}$ and/or γ.

- A two-fold ambiguity remains in solving for $\beta m_{h_{0}}^{2}$ and $m_{\phi_{0}}^{2}$, corresponding to which we take to be the larger.
We resolve this ambiguity by requiring that $m_{h_{0}}^{2} \rightarrow m_{h}^{2}$ in the $\boldsymbol{\xi} \rightarrow 0$ limit. This means that for $\beta m_{h_{0}}^{2}$ we take the $+(-)$ sign in Eq. (11) for $m_{h}>m_{\phi}\left(m_{h}<m_{\phi}\right)$, i.e. for $m_{h}=m_{+}\left(m_{h}=m_{-}\right)$, respectively.
- Given this choice, we complete the inversion by writing out the kinetic energy of Eq. (??) using the substitutions of Eqs. (5) and (6) and demanding
that the coefficients of $-\frac{1}{2} h^{2}$ and $-\frac{1}{2} \phi^{2}$ agree with the given input values for m_{h}^{2} and m_{ϕ}^{2}.
It is easy to show that these requirements are equivalent and imply

$$
\begin{equation*}
\sin 2 \theta=\frac{12 \gamma \xi m_{h_{0}}^{2}}{Z\left(m_{\phi}^{2}-m_{h}^{2}\right)} \tag{13}
\end{equation*}
$$

Note that the sign of $\sin 2 \theta$ depends upon whether $m_{h}^{2}>m_{\phi}^{2}$ or vice versa. It is convenient to rewrite the result for $\tan 2 \theta$ of Eq. (7)

$$
\begin{equation*}
\tan 2 \theta=\frac{12 \gamma \xi m_{h_{0}}^{2}}{Z\left(m_{\phi}^{2}+m_{h}^{2}-2 m_{h_{0}}^{2}\right)} \tag{14}
\end{equation*}
$$

In combination, Eqs. (13) and (14) are used to determine $\cos 2 \theta$. Together, $\sin 2 \theta$ and $\cos 2 \theta$ give a unique solution for θ.

Using this inversion, for given ξ, γ, m_{h} and m_{ϕ} we compute

- Z^{2} from Eq. (8),
- $m_{h_{0}}^{2}$ and $m_{\phi_{0}}^{2}$ from Eq. (11),
- and then θ from Eq. (7).
- With this input, we can then obtain a, b, c, d as defined in Eqs. (5) and (6).
- Net result

4 independent parameters to completely fix the mass diagonalization of the scalar sector when $\xi \neq 0$. These are:

$$
\begin{equation*}
\xi, \quad \Lambda_{\phi}, \quad m_{h}, \quad m_{\phi}, \tag{15}
\end{equation*}
$$

where we recall that $\gamma \equiv v_{0} / \Lambda_{\phi}$ with $v_{0}=246 \mathrm{GeV}$.
Two additional parameters will be required to completely fix the phenomenology of the scalar sector, including all possible decays. These are

$$
\begin{equation*}
\hat{\Lambda}_{W}, \quad m_{1} \tag{16}
\end{equation*}
$$

where $\widehat{\Lambda}_{W}$ will determine KK-graviton couplings to the h and ϕ and m_{1} is the mass of the first KK graviton excitation.

We recall the earlier formulae:

$$
\begin{align*}
\hat{\Lambda}_{W} & \equiv \frac{2 \sqrt{b_{0}}}{\epsilon \chi^{n}(1 / 2)} \simeq \sqrt{2} M_{P l} \Omega_{0} \\
m_{n} & =m_{0} x_{n} \Omega_{0}, \\
\Lambda_{\phi} & =\sqrt{6} M_{P l} \Omega_{0}=\sqrt{3} \widehat{\Lambda}_{W}, \tag{17}
\end{align*}
$$

where $\Omega_{0} M_{P l}=e^{-m_{0} b_{0} / 2} M_{P l}$ should be of order a TeV to solve the hierarchy problem. In Eq. (17), the x_{n} are the zeroes of the Bessel function $J_{1}\left(x_{1} \sim 3.8, x_{2} \sim 7.0\right)$. A useful relation following from the above equations is:

$$
\begin{equation*}
m_{1}=x_{1} \frac{m_{0}}{M_{P l}} \frac{\Lambda_{\phi}}{\sqrt{6}} . \tag{18}
\end{equation*}
$$

$m_{0} / M_{P l}$ is related to the curvature of the brane and should be a relatively small number for consistency of the RS scenario.

- Sample parameters that are safe from precision EW data and Runl Tevatron constraints are $\Lambda_{\phi}=5 \mathrm{TeV}\left(\Rightarrow \widehat{\Lambda}_{W} \sim 3 \mathrm{TeV}\right)$ and $m_{0} / \boldsymbol{M}_{P l}=0.1$.

We will also consider a marginal scenario with $\Lambda_{\phi}=1 \mathrm{TeV}$.

- For m_{h} and m_{ϕ} we will consider a range of possibilities, but with some prejudice towards $m_{\phi}<m_{h}$. There are theoretical arguments in favor of this.

A light radion ϕ eigenstate presents a particularly rich phenomenology.

The Couplings

The $f \bar{f}$ and $V V$ couplings
The $V V$ couplings

- The h_{0} has standard $Z Z$ coupling while the ϕ_{0} has $Z Z$ coupling deriving from the interaction $-\frac{\phi_{0}}{\Lambda_{\phi}} T_{\mu}^{\mu}$ using the covariant derivative portions of $T_{\mu}^{\mu}\left(h_{0}\right)$. The result for the $\eta_{\mu \nu}$ portion of the $Z Z$ couplings is:

$$
\begin{equation*}
g_{Z Z h}=\frac{g m_{Z}}{c_{W}}(d+\gamma b), \quad g_{Z Z \phi}=\frac{g m_{Z}}{c_{W}}(c+\gamma a) \tag{19}
\end{equation*}
$$

g and c_{W} denote the $S U(2)$ gauge coupling and $\cos \theta_{W}$, respectively. The $W W$ couplings are obtained by replacing $g m_{Z} / c_{W}$ by $g m_{W}$.

- Additional contributions to the $Z Z h$ and $Z Z \phi$ couplings come from $-\frac{\phi_{0}}{\Lambda_{\phi}} T_{\mu}^{\mu}$ for the gauge fixing portions of $T_{\mu \nu}$. These terms vanish when contracted with on-shell W or Z polarizations, which is the physical situation we are interested in. In addition, these extra couplings vanish in the unitary gauge.
- The $f \bar{f}$ couplings
- The h_{0} has standard fermionic couplings.
- The fermionic couplings of the ϕ_{0} derive from $-\frac{\phi_{0}}{\Lambda_{\phi}} T_{\mu}^{\mu}$ using the Yukawa interaction contributions to T_{μ}^{μ}.
- One obtains results in close analogy to the $V V$ couplings just considered:

$$
\begin{equation*}
g_{f \bar{f} h}=-\frac{g m_{f}}{2 m_{W}}(d+\gamma b), \quad g_{f \bar{f} \phi}=-\frac{g m_{f}}{2 m_{W}}(c+\gamma a) . \tag{20}
\end{equation*}
$$

- Note same factors for $W W$ and $f \bar{f}$ couplings.

J. Gunion

The $g g$ and $\gamma \gamma$ couplings

- There are the standard loop contributions, except rescaled by $f \bar{f} / V V$ strength factor.

For c_{γ}, the \sum_{i} comprises all charged fermions (including quarks, with $N_{c}^{i}=3$ and $e_{i}=2 / 3$ or $-1 / 3$, and leptons, with $e_{i}=-1$ and $N_{c}^{i}=1$) and the W boson (with $e_{i}=1$ and $N_{c}^{i}=1$).
For c_{g}, the \sum_{i} is over all colored fermions (assumed to have $N_{c}^{i}=3$).
The auxiliary functions are:

$$
\begin{align*}
F_{1 / 2}(\tau) & =-2 \tau[1+(1-\tau) f(\tau)] \tag{21}\\
F_{1}(\tau) & =2+3 \tau+3 \tau(2-\tau) f(\tau) \tag{22}
\end{align*}
$$

for spin-1/2 and spin-1 loop particles, respectively, with

$$
\begin{equation*}
f(\tau)=-\frac{1}{4} \ln \left[-\frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}}\right]^{2} \tag{23}
\end{equation*}
$$

$\tau \equiv 4 m^{2} / M^{2}$, where m is the mass of the internal loop particle and M is the mass of the scalar state, h or ϕ.

- Must include the anomalous contributions, which are expressed in terms of the $\operatorname{SU}(3) \times \operatorname{SU}(2) \times \mathbf{U}(1) \beta$ function coefficients $b_{3}=7, b_{2}=19 / 6$ and $b_{Y}=-41 / 6$.
- For the $h, g_{f V}=d+\gamma b$ and $g_{r}=\gamma b$. For the $\phi, g_{f V}=c+\gamma a$ and $g_{r}=\gamma a$.

$$
\begin{aligned}
& g, \mu, a
\end{aligned}
$$

$$
\begin{aligned}
& g, \nu, b \\
& \gamma, \mu \\
& \phi, h \underset{\sim}{\sqrt{k_{1}}}{\underset{\sim}{k}}_{2} \quad i c_{\gamma}\left[k_{1} \cdot k_{2} \eta^{\mu \nu}-k_{1}^{\nu} k_{2}^{\mu}\right]: c_{\gamma}=-\frac{\alpha}{2 \pi v}\left[g_{f V} \sum_{i} e_{i}^{2} N_{c}^{i} F_{i}\left(\tau_{i}\right)-\left(b_{2}+b_{Y}\right) g_{r}\right]
\end{aligned}
$$

$Z h \phi$ tree level couplings are absent.

The cubic interactions

1. First, we have

$$
\begin{equation*}
\mathcal{L} \ni-V\left(H_{0}\right)=-\lambda\left(H_{0}^{\dagger} H_{0}-\frac{1}{2} v_{0}^{2}\right)^{2}=-\lambda\left(v_{0}^{2} h_{0}^{2}+v_{0} h_{0}^{3}+\frac{1}{4} h_{0}^{4}\right), \tag{24}
\end{equation*}
$$

after substituting $H_{0}=\frac{1}{\sqrt{2}}\left(v_{0}+h_{0}\right)$. Expressing λ in terms of $m_{h_{0}}$ as in Eq. (??), the h_{0}^{3} term of Eq. (24) becomes

$$
\begin{equation*}
\mathcal{L} \ni-\frac{m_{h_{0}}^{2}}{2 v_{0}} h_{0}^{3} . \tag{25}
\end{equation*}
$$

2. The interaction of ϕ_{0} with $T_{\mu}^{\mu}\left(h_{0}\right)$:

$$
\begin{equation*}
-\frac{\phi_{0}}{\Lambda_{\phi}} T_{\mu}^{\mu}\left(h_{0}\right)=-\frac{\phi_{0}}{\Lambda_{\phi}}\left(-\partial^{\rho} h_{0} \partial_{\rho} h_{0}+4 \lambda v_{0}^{2} h_{0}^{2}\right) . \tag{26}
\end{equation*}
$$

3. The interaction of the KK-gravitons with $T^{\mu \nu}\left(h_{0}\right)$:

$$
\begin{equation*}
-\frac{\epsilon}{2} h_{\mu \nu}(x, y=1 / 2) T^{\mu \nu} \ni-\frac{1}{\widehat{\Lambda}_{W}} \sum_{n} h_{\mu \nu}^{n} \partial^{\mu} h_{0} \partial^{\nu} h_{0} \tag{27}
\end{equation*}
$$

where we keep only the derivative contributions and we have dropped (using the gauge $h_{\mu}^{\mu n}=0$) the $\eta^{\mu \nu}$ parts of $T^{\mu \nu}$.
4. The $\boldsymbol{\xi}$-dependent tri-linear components of Eq. (??):

$$
\begin{aligned}
& 6 \xi \Omega(x)\left(-\square \Omega(x)+\epsilon h_{\mu \nu}(x, y=1 / 2) \partial^{\mu} \partial^{\nu} \Omega(x)\right) H_{0}^{\dagger} H_{0} \\
& \ni\left[-3 \frac{\xi}{\Lambda_{\phi}} h_{0}^{2} \square \phi_{0}-6 \xi \frac{v_{0}}{\Lambda_{\phi}^{2}} h_{0} \phi_{0} \square \phi_{0}\right. \\
& \left.-12 \xi \frac{v_{0}}{\widehat{\Lambda}_{W} \Lambda_{\phi}} \sum_{n} h_{\mu \nu}^{n} \partial^{\mu} \phi_{0} \partial^{\nu} h_{0}-6 \xi \frac{v_{0}^{2}}{\hat{\Lambda}_{W} \Lambda_{\phi}^{2}} \sum_{n} h_{\mu \nu}^{n} \partial^{\mu} \phi_{0} \partial^{\nu} \phi_{0}\right](28)
\end{aligned}
$$

where we have employed the expansion of $h_{\mu \nu}(x, y=1 / 2)$ in terms of the $h_{\mu \nu}^{n}$, used the gauge conditions $\partial^{\mu} h_{\mu \nu}^{n}=0$ and $h_{\mu}^{\mu n}=0$, and also used the symmetry of $h_{\mu \nu}$.

$$
\begin{aligned}
& \underset{k_{3}}{h} \quad \frac{h}{-\kappa_{1}} \quad i \frac{g_{h h h}}{\Lambda_{\phi}} \equiv \frac{i}{\Lambda_{\phi}}\left[b d\left\{[12 b \gamma \xi+d(6 \xi+1)]\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)-12 d m_{h_{0}}^{2}\right\}-3 \gamma^{-1} d^{3} m_{h_{0}}^{2}\right] \\
& i \frac{g_{\phi \phi \phi}}{\Lambda_{\phi}} \equiv \frac{i}{\Lambda_{\phi}}\left[a c\left\{[12 a \gamma \xi+c(6 \xi+1)]\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)-12 c m_{h_{0}}^{2}\right\}-3 \gamma^{-1} c^{3} m_{h_{0}}^{2}\right] \\
& i \frac{g_{\phi \phi h}}{\Lambda_{\phi}} \equiv \frac{i}{\Lambda_{\phi}}\left[\left\{6 a \xi(\gamma(a d+b c)+c d)+b c^{2}\right\}\left(k_{1}^{2}+k_{2}^{2}\right)\right. \\
& \left.+c\{12 a b \gamma \xi+2 a d+b c(6 \xi-1)\} k_{3}^{2}-4 c(2 a d+b c) m_{h_{0}}^{2}-3 \gamma^{-1} c^{2} d m_{h_{0}}^{2}\right] \\
& \begin{array}{ccc}
\phi & \prime \prime \\
k_{3} & h \\
& k_{2}
\end{array} \\
& i \frac{g_{\phi h h}}{\Lambda_{\phi}} \equiv \frac{i}{\Lambda_{\phi}}\left[\left\{6 b \xi(\gamma(a d+b c)+c d)+a d^{2}\right\}\left(k_{1}^{2}+k_{2}^{2}\right)\right. \\
& \left.+d\{12 a b \gamma \xi+2 b c+a d(6 \xi-1)\} k_{3}^{2}-4 d(a d+2 b c) m_{h_{0}}^{2}-3 \gamma^{-1} c d^{2} m_{h_{0}}^{2}\right]
\end{aligned}
$$

Constraints from LEP/LEP2

- Choose $\Lambda_{\phi}=5 \mathrm{TeV}$. The $Z^{2}>0$ gives $\boldsymbol{\xi}$ constraint.
- LEP/LEP2 provides an upper limit on $Z Z s(s=h$ or $\phi)$ from which we can exclude regions in the $\left(m_{h}, m_{\phi}\right)$ plane for a given choice of \boldsymbol{R}^{2}.

Use upper limits on the $Z Z s$ coupling in both with and without b tagging, with computed branching ratios into b and non- b final states.

- Conclusion:

Small m_{ϕ} relative to m_{h} is entirely possible given current data so long as $m_{h} \gtrsim 115 \mathrm{GeV}$. (The $Z Z \phi$ coupling does not blow up.)

Couplings

- First, consider the $f \bar{f} / V V$ couplings of h and ϕ relative to SM, taking $m_{h}=120 \mathrm{GeV}$ and $\Lambda_{\phi}=5 \mathrm{TeV}$.
- Next, the h^{3} and ϕ^{3} couplings relative to h_{SM}^{3} taking $m_{h_{\mathrm{SM}}}=m_{h}$ or m_{ϕ}, respectively.

Deviations shown should be readily explorable at an LC for the h^{3} coupling, but the ϕ^{3} coupling may be difficult to probe except where it gets near 1 (relative to SM comparison).

Physics Implications

${ }_{-}{ }_{+}{ }^{\perp} \leftarrow \mathrm{KS}_{\mathrm{Y}} \leftarrow \mathrm{MM} /{ }_{-}{ }_{+}{ }^{\perp} \leftarrow \mathrm{Y} \leftarrow \mathrm{MM}$: o!̣ed әךеч

J. Gunion

More marginal case: $\boldsymbol{\Lambda}_{\boldsymbol{\phi}}=1 \mathrm{TeV}$

CONCLUSIONS

- The Higgs-radion sector will certainly be very revealing, and for some parameter choices may prove quite challenging to fully explore.
- In fact, at the LHC one can miss both the $\boldsymbol{\phi}$ and the \boldsymbol{h} for the most difficult parameter choices: $\boldsymbol{m}_{\boldsymbol{\phi}}=\mathbf{2 0 0} \mathrm{GeV}$ and substantially negative $\boldsymbol{\xi}$.
- \Rightarrow keep improving and working on every possible signature.
- The large deviations of \boldsymbol{h} properties with respect to $\boldsymbol{h}_{\mathrm{SM}}$ properties is not really surprising given the nearness of the $\Lambda_{\phi}=1 \mathrm{TeV}$ scale to the Higgs mass scales being considered.
- It would be nice to rule out the very light ϕ possibility.
- The decays (such as $h \rightarrow \phi \phi$ and $h \rightarrow h^{n} \phi$) which are only present if $\xi \neq 0$ can have large branching ratios and would provide an incontrovertible signature for mixing.

